概率论复习笔记(13-19)

13.随机变量的分布

离散型的很简单 因为都是可列的值 所以我们重点考虑连续型

 

 

 连续型:

 

 

 就是我们根据x和y的关系 把Y=g(X)带进去求Y的概率密度 并且我们要注意一些细节(比如和y的定义域我们要求交集)、

但是这只是纯理论 掌握这里的知识要用例题

第二种方法是公式法:

 

 

 例题(第一种方法):

 

 

 

 今后复习应该着重这种类型题 因为需要大量练习

公式法:

 

 

 

 

之后就是复习 多维随机变量这个模块了 这个也是比较重要的

 14. 多维随机变量及其分布

 

 

 

 

 

15.二维离散型随机变量的概率分布 边缘分布 条件分布

 

 剩下的边缘分布条件分布略

 

16.二维连续型随机变量的概率密度 边缘密度 条件密度

 

 

 

 

 条件= 联合/边缘

17.随机变量的独立性

 

 也就是联合= 边缘*边缘

性质:

 

 18. 常见二维随机变量的分布

 

 大纲只要求这两种

均匀分布:

 

正态分布的性质:

 

 

 对于一般的随机变量 独立推出不相关 但是对于二维正态 不相关也能推出独立

 19..二维随机变量的分布

离散型随机变量的分布

 

 这种混合型的 看题吧:

 

 

有限可加性:

 

 

但是 我们用全概率公式 也能有这种结果

殊途同归

 

 

 

 

 还有一种情形 两个都是连续的:(近几年没考过)

 

 

 对于都是连续的:

方法:

 

 

 

 

 

 

 推广的卷积公式记忆有点烦 所以要学会现推

 

 例题:好懂

 

 毕竟啊均匀分布

 

 

 

 两个连续型是难点啊 得多练习

 

卷积的两个思路:




 

猜你喜欢

转载自www.cnblogs.com/ranzhong/p/13199218.html