欧拉函数的性质及其证明

欧拉函数

  • p p 是素数,则有 ϕ ( p ) = p 1 \phi(p) = p - 1

    证明:显然。

  • p p 是素数, n = p k n = p ^ k ,则 ϕ ( n ) = p k p k 1 \phi(n) = p ^ k - p ^ {k - 1}

    证明:

    [ 1 , n ] [1, n] 内, p p 的约数有 p , 2 p , 3 p , 4 p ( p k 1 1 ) p p, 2p, 3p, 4p……(p^{k - 1} - 1)p 个,所以 ϕ ( n ) = p k 1 ( p k 1 1 ) = p k p k 1 \phi(n) = p^k - 1 - (p ^ {k - 1} - 1) = p ^ k - p ^ {k - 1}

  • p , q p, q 是素数, ϕ ( p q ) = ϕ ( p ) ϕ ( q ) \phi(pq) = \phi(p) * \phi(q)

    证明:

    p q 1 pq - 1 内是 p p 的倍数的有 q 1 q - 1 个,是 q q 的倍数的有 p 1 p - 1 个, ϕ ( p q ) = p q 1 ( q 1 ) ( p 1 ) = p q p q 1 = ( p 1 ) ( q 1 ) = ϕ ( p ) ϕ ( q ) \phi(pq) = pq - 1 - (q - 1) - (p - 1) = pq - p - q - 1 = (p - 1)(q - 1) = \phi(p)\phi(q)

    拓展 p , q p, q 互质即可满足条件。

  • a % p = = 0 , p a \% p == 0, p是质数 ,则 ϕ ( a p ) = ϕ ( a ) p \phi(ap) = \phi(a)p

    证明:

    一定有 a = k p n a = kp^n k , p k, p 互质,

    ϕ ( a ) = ϕ ( k ) ϕ ( p n ) \therefore \phi(a) = \phi(k)\phi(p^n)

    ϕ ( k ) = ϕ ( a ) ϕ ( a n ) \therefore\phi(k) = \frac{\phi(a)}{\phi(a^n)}

    a p = k p n + 1 \because ap = k p ^{n + 1}

    ϕ ( a p ) = ϕ ( k ) ϕ ( p n + 1 ) \therefore\phi(ap) = \phi(k)\phi(p ^{n + 1})

    ϕ ( a p ) = ϕ ( a ) ϕ ( p n + 1 ) ϕ ( p n ) \therefore\phi(ap) = \phi(a) \frac{\phi(p ^{n + 1})}{\phi(p ^n)}

    ϕ ( p n + 1 ) = p n + 1 p n , ϕ ( p n ) = p n p n 1 \because \phi(p ^{n + 1}) = p ^{n + 1} - p ^ n, \phi(p ^n) = p ^ n - p ^{n - 1}

    ϕ ( a p ) = ϕ ( a ) ϕ ( p n + 1 ) ϕ ( p n ) = ϕ ( a ) p n + 1 p n p n p n 1 \therefore\phi(ap) = \phi(a) \frac{\phi(p ^ {n + 1})}{\phi(p ^ n)} = \phi(a) \frac{p ^ {n + 1} - p ^ n}{p ^n - p ^ {n - 1}}

    ϕ ( a p ) = ϕ ( a ) p \therefore \phi(ap) = \phi(a)p

  • n = p 1 a 1 p 2 a 2 p n a n n = p_1 ^ {a_1}p_2 ^ {a_2}……p_n ^{a_n} 则, ϕ ( n ) = n ( 1 1 p 1 ) ( 1 1 p 2 ) 1 p n \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}

    证明:

    ϕ ( n ) = ϕ ( p 1 a 1 ) ϕ ( p 2 a 2 ) ϕ ( p n a n ) \because\phi(n) = \phi(p_1^{a_1})\phi(p_2^{a_2})……\phi(p_n^{a_n})

    ϕ ( n ) = ( p 1 a 1 p 1 a 1 1 ) ( p 2 a 2 p 2 a 2 1 ) ( p n a n p n a n 1 ) \therefore\phi(n) = (p_1^{a_1} - p_1^{a_1 - 1})(p_2^{a_2} - p_2 ^{a_2 - 1})……(p_n ^{a_n} - p_n^{a_n - 1})

    每个括号里提出一个 p i a i p_i ^{a_i} ϕ ( n ) = p 1 a 1 p 2 a 2 p n a n ( 1 1 p 1 ) ( 1 1 p 2 ) 1 p n \phi(n) = p_1 ^ {a_1}p_2 ^ {a_2}……p_n ^{a_n}(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}

    即证得: ϕ ( n ) = n ( 1 1 p 1 ) ( 1 1 p 2 ) 1 p n \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})……\frac{1}{p_n}

  • 关于欧拉函数得递推求法

    显然可以在欧拉素数筛的同时得到欧拉函数值

    p r i m e [ j ] i prime[j] \mid i 时,有 ϕ ( i p r i m e [ j ] ) = ϕ ( i ) p r i m e [ j ] \phi(i * prime[j]) = \phi(i) * prime[j]

    其次就是两个互质的情况了

    ϕ ( i p r i m e [ j ] ) = ϕ ( i ) ( p r i m e [ j ] 1 ) \phi(i * prime[j]) = \phi(i) * (prime[j] - 1)

    再最后就是 i i 为质数的情况了, ϕ ( i ) = i 1 \phi(i) = i - 1

  • n n 的所有约数的欧拉函数之和等于 n n

    证明:

  • 对于给定 n n i = 1 n 1 i ( g c d ( i , n ) = = 1 ) = n ϕ n 2 \sum_{i = 1}^{n - 1}i(gcd(i, n) == 1) = \frac{n\phi{n}}{2}

    证明:

    显然 g c d ( i , n ) = 1 gcd(i, n) = 1 ,则有 g c d ( n i , n ) = 1 gcd(n - i, n) = 1 ,所以互质数两两存在则有上面式子 i = 1 n 1 i ( g c d ( i , n ) = = 1 ) = n ϕ n 2 \sum_{i = 1}^{n - 1}i(gcd(i, n) == 1) = \frac{n\phi{n}}{2} 成立。

  • d = g c d ( a , b ) d = gcd(a, b) ϕ ( a b ) = ϕ ( a ) ϕ ( b ) d ϕ ( d ) \phi(ab) = \frac{\phi(a)\phi(b)d}{\phi(d)}

    证明:

猜你喜欢

转载自blog.csdn.net/weixin_45483201/article/details/107677046