SP5971 LCMSUM - LCM Sum

SP5971 LCMSUM - LCM Sum

思路

i = 1 n l c m ( i , n ) \sum_{i = 1}^{n}lcm(i, n)

= > i = 1 n i n g c d ( i , n ) => \sum_{i = 1}^{n}\frac{i n}{gcd(i, n)}

= > n i = 1 n i g c d ( i , n ) => n\sum_{i = 1}^{n}\frac{i}{gcd(i, n)}

我们按照P2303 [SDOI2012] Longge的思路枚举 g c d ( i , n ) gcd(i, n)

= > n d n i = 1 n i d ( g c d ( i , n ) = = 1 ) =>n\sum_{d\mid n} \sum_{i = 1}^{n} \frac{i}{d}(gcd(i, n) == 1)

= > n d n i = 1 n d i ( g c d ( i , n d ) = = 1 ) =>n\sum_{d\mid n}\sum_{i = 1}^{\frac{n}{d}} i(gcd(i, \frac{n}{d}) == 1)

这个式子就熟悉了 i = 1 n i ( g c d ( i , n ) = = 1 ) = n ϕ ( n ) 2 \sum_{i = 1} ^{n} i(gcd(i, n) == 1) = \frac{n\phi(n)}{2} ,给定一个整数 n n 小于 n n 的数并且与 n n 互质的数的和是这个式子,所以上式变成

= > = > n d n d ϕ ( d ) 2 =>=>n\sum_{d\mid n}\frac{d\phi(d)}{2}

所以我们只要枚举 n n 的约数就行了。

这里还存在一个问题,对于 g c d = d = 1 gcd = d = 1 的时候,我们统计的答案是没用贡献的,所以我们还要加上 l c m ( 1 , n ) = n lcm(1, n) = n 得到我们最后的答案,

这里我整体复杂度是 O ( n ) + T n O(n) + T\sqrt n ,先用素数筛筛选出所有的 ϕ ( i ) \phi(i) ,然后再每次计算答案。

第一道自己推出来的数学题,难得啊!!!

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
// #include <iostream>
// #include <algorithm>
// #include <stdlib.h>
// #include <cmath>
// #include <vector>
// #include <cstdio>
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

void print(ll x) {
    if(x < 10) {
        putchar(x + 48);
        return ;
    }
    print(x / 10);
    putchar(x % 10 + 48);
}

const int N = 1e6 + 10;

int eular[N], n;

vector<int> prime;

bool st[N];

void init() {
    st[0] = st[1] = 1;
    eular[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime.pb(i);
            eular[i] = i - 1;
        }
        for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j]) {
                eular[i * prime[j]] = eular[i] * (prime[j] - 1);
            }
            else {
                eular[i * prime[j]] = eular[i] * prime[j];
                break;
            }
        }
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    init();
    int T = read();
    while(T--) {
        int n = read();
        ll ans = 0;
        for(int i = 1; i * i <= n; i++) {
            if(n % i == 0) {
                ans += 1ll * i * eular[i] / 2;
                if(i * i != n) {
                    ans += 1ll * n / i * eular[n / i] / 2;
                }
            }
            cout << ans << endl;
        }
        printf("%lld\n", 1ll * n * ans + n);
    }
	return 0;
}

猜你喜欢

转载自blog.csdn.net/weixin_45483201/article/details/107672352
lcm