【数字信号处理】【傅里叶分析】【FFT】快速傅里叶变换的完整公式推导

给出离散傅里叶变换DFT的公式:
D F T [ x ( n ) ] = X ( m ) = n = 0 N 1 x ( n ) e x p ( j 2 π m n N ) , m [ 0 , N 1 ] = x ( 0 ) e x p ( j 2 π m 0 N ) + x ( 1 ) e x p ( j 2 π m 1 N ) + x ( 2 ) e x p ( j 2 π m 2 N ) + x ( 3 ) e x p ( j 2 π m 3 N ) + . . . \begin{aligned} DFT[x(n)]=X(m)&=\sum_{n=0}^{N-1}x(n)exp(-j\frac{2\pi mn}{N}),m\in[0,N-1]\\ &=x(0)exp(-j\frac{2\pi m0}{N})+x(1)exp(-j\frac{2\pi m1}{N})+x(2)exp(-j\frac{2\pi m2}{N})+x(3)exp(-j\frac{2\pi m3}{N})+... \end{aligned}

FFT将DFT公式分成奇和偶两部分,即,将含 x ( 0 ) , x ( 2 ) , . . . x(0),x(2),... 的项取出,作为偶数项,将含 x ( 1 ) , x ( 3 ) , . . . x(1),x(3),... 的项取出,作为奇数项,有
X ( m ) = n = 0 N 2 1 x ( 2 n ) e x p ( j 2 π m 2 n N ) + n = 0 N 2 1 x ( 2 n + 1 ) e x p ( j 2 π m ( 2 n + 1 ) N ) , m [ 0 , N 1 ] = n = 0 N 2 1 x ( 2 n ) e x p ( j 2 π m n N 2 ) + exp ( j 2 π m N ) n = 0 N 2 1 x ( 2 n + 1 ) exp ( j 2 π m n N 2 ) , m [ 0 , N 2 1 ] \begin{aligned} X(m)&=\sum_{n=0}^{\frac{N}{2}-1}x(2n)exp(-j\frac{2\pi m2n}{N})+\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)exp(-j\frac{2\pi m(2n+1)}{N}),m\in[0,N-1]\\ &=\sum_{n=0}^{\frac{N}{2}-1}x(2n)exp(-j\frac{2\pi mn}{\frac{N}{2}})+\exp(-j\frac{2\pi m}{N})\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)\exp(-j\frac{2\pi mn}{\frac{N}{2}}),m\in[0,\frac{N}{2}-1]\\ \end{aligned}
可以看到经过变换后, m m 的取值范围变成了一半。现在考虑另一半的m,有
X ( m + N 2 ) = n = 0 N 2 1 x ( 2 n ) exp ( j 2 π n ( m + N 2 ) N 2 ) + exp ( j 2 π ( m + N 2 ) N ) n = 0 N 2 1 x ( 2 n + 1 ) exp ( j 2 π n ( m + N 2 ) N 2 ) , m [ 0 , N 2 1 ] = n = 0 N 2 1 x ( 2 n ) exp ( j 2 π m n N 2 ) exp ( j 2 π n ) + exp ( j 2 π m N ) exp ( j π ) n = 0 N 2 1 x ( 2 n + 1 ) exp ( j 2 π n m N 2 ) exp ( j 2 π n ) , m [ 0 , N 2 1 ] = n = 0 N 2 1 x ( 2 n ) e x p ( j 2 π m n N 2 ) exp ( j 2 π m N ) n = 0 N 2 1 x ( 2 n + 1 ) exp ( j 2 π m n N 2 ) , m [ 0 , N 2 1 ] \begin{aligned} X(m+\frac{N}2)&=\sum_{n=0}^{\frac{N}{2}-1}x(2n)\exp(-j\frac{2\pi n(m+\frac{N}2)}{\frac{N}{2}})+\exp(-j\frac{2\pi (m+\frac{N}2)}{N})\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)\exp(-j\frac{2\pi n(m+\frac{N}2)}{\frac{N}{2}}),m\in[0,\frac{N}{2}-1]\\ &=\sum_{n=0}^{\frac{N}{2}-1}x(2n)\exp(-j\frac{2\pi mn}{\frac{N}{2}})\exp(-j2\pi n)+\exp(-j\frac{2\pi m}{N})\exp(-j\pi)\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)\exp(-j\frac{2\pi nm}{\frac{N}{2}})\exp(-j2\pi n),m\in[0,\frac{N}{2}-1]\\ &=\sum_{n=0}^{\frac{N}{2}-1}x(2n)exp(-j\frac{2\pi mn}{\frac{N}{2}})-\exp(-j\frac{2\pi m}{N})\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)\exp(-j\frac{2\pi mn}{\frac{N}{2}}),m\in[0,\frac{N}{2}-1] \end{aligned}

W N θ = exp ( j 2 π θ N ) W^\theta_N=\exp(-j\frac{2\pi \theta}{N})
X ( m ) = n = 0 N 2 1 x ( 2 n ) W N 2 m n + W N m n = 0 N 2 1 x ( 2 n + 1 ) W N 2 m n , m [ 0 , N 2 1 ] X ( m + N 2 ) = n = 0 N 2 1 x ( 2 n ) W N 2 m n W N m n = 0 N 2 1 x ( 2 n + 1 ) W N 2 m n , m [ 0 , N 2 1 ] X(m)=\sum_{n=0}^{\frac{N}{2}-1}x(2n)W_{\frac{N}2}^{mn}+W_N^m\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)W_{\frac{N}2}^{mn},m\in[0,\frac{N}{2}-1]\\ X(m+\frac{N}2)=\sum_{n=0}^{\frac{N}{2}-1}x(2n)W_{\frac{N}2}^{mn}-W_N^m\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)W_{\frac{N}2}^{mn},m\in[0,\frac{N}{2}-1]\\
注意到
n = 0 N 2 1 x ( 2 n ) W N 2 m n n = 0 N 2 1 x ( 2 n + 1 ) W N 2 m n \sum_{n=0}^{\frac{N}{2}-1}x(2n)W_{\frac{N}2}^{mn} ①\\ \sum_{n=0}^{\frac{N}{2}-1}x(2n+1)W_{\frac{N}2}^{mn} ②
①和②分别是 N N 点序列 x ( n ) x(n) 中对偶数项与奇数项的 N 2 \frac N 2 点的DFT。

上述两个式子 X ( m ) X(m) X ( m + N 2 ) X(m+\frac N2) 为FFT的核心公式,即一个 N N 点DFT可以分成2个 N 2 \frac N2 点的DFT,并且前 N 2 \frac N2 点DFT与后 N 2 \frac N2 点DFT之间,只有正负号的不同,所以可以使用前 N 2 \frac N2 点DFT公式中的元素,计算后 N 2 \frac N2 点DFT中的元素,使计算量降低。

根据该思路,可以将①和②继续分解,分别求①中奇数项与偶数项的 N 4 \frac N 4 点DFT,和②中奇数项和偶数项的 N 4 \frac N 4 点DFT。这样一直分解下去,直到分解成最简单的2点DFT为止。注意到,在FFT中,N点DFT会一分为二,二分为四,四分为八,最后会分解成多个2点DFT,所以N必须是2的幂次。

接下来,本文用一个 N = 8 N=8 点FFT进行说明。

首先写出8点DFT原始公式
D F T [ x ( n ) ] = X ( m ) = n = 0 7 x ( n ) e x p ( j 2 π m n N ) , m [ 0 , 7 ] DFT[x(n)]=X(m)=\sum_{n=0}^{7}x(n)exp(-j\frac{2\pi mn}{N}),m\in[0,7]
根据上文的FFT核心公式,8点DFT可以分为两个4点DFT,即
X ( m ) = n = 0 3 x ( 2 n ) W 4 m n + W 8 m n = 0 3 x ( 2 n + 1 ) W 4 m n , m [ 0 , 3 ] X ( m + 4 ) = n = 0 3 x ( 2 n ) W 4 m n W 8 m n = 0 3 ( 2 n + 1 ) W 4 m n , m [ 0 , 3 ] X(m)=\sum_{n=0}^{3}x(2n)W_4^{mn}+W_8^m\sum_{n=0}^3x(2n+1)W_4^{mn},m\in[0,3]\\ X(m+4)=\sum_{n=0}^3x(2n)W_4^{mn}-W_8^m\sum_{n=0}^3(2n+1)W_4^{mn},m\in[0,3]\\

X 1 ( m ) = n = 0 3 x ( 2 n ) W 4 m n X 2 ( m ) = n = 0 3 x ( 2 n + 1 ) W 4 m n X_1(m)=\sum_{n=0}^{3}x(2n)W_4^{mn}\\ X_2(m)=\sum_{n=0}^{3}x(2n+1)W_4^{mn}\\

X ( m ) = X 1 ( m ) + W 8 m X 2 ( m ) , m [ 0 , 3 ] X ( m + 4 ) = X 1 ( m ) W 8 m X 2 ( m ) , m [ 0 , 3 ] X(m)=X_1(m)+W_8^mX_2(m),m\in[0,3]\\ X(m+4)=X_1(m)-W_8^mX_2(m),m\in[0,3]\\
1、对 X 1 ( m ) X_1(m) 进行奇偶分解,有
X 1 ( m ) = n = 0 1 x ( 2 ( 2 n ) ) W 4 m 2 n + n = 0 1 x ( 2 ( 2 n + 1 ) ) W 4 m ( 2 n + 1 ) , m [ 0 , 3 ] = n = 0 1 x ( 4 n ) exp ( 2 π m 2 n 4 ) + W 4 m n = 0 1 x ( 4 n + 2 ) exp ( j 2 π m 2 n 4 ) , m [ 0 , 3 ] = n = 0 1 x ( 4 n ) W 2 m n + W 4 m n = 0 1 x ( 4 n + 2 ) W 2 m n , m [ 0 , 1 ] = x ( 0 ) W 2 0 + x ( 4 ) W 2 m + W 4 m [ x ( 2 ) W 2 0 + x ( 6 ) W 2 m ] , m [ 0 , 1 ] = x ( 0 ) + x ( 4 ) W 2 m + W 4 m [ x ( 2 ) + x ( 6 ) W 2 m ] , m [ 0 , 1 ] \begin{aligned} X_1(m)&=\sum_{n=0}^{1}x(2(2n))W_4^{m2n}+\sum_{n=0}^1x(2(2n+1))W_4^{m(2n+1)},m\in[0,3]\\ &=\sum_{n=0}^{1}x(4n)\exp(-\frac{2\pi m2n}{4})+W_4^m\sum_{n=0}^1x(4n+2)\exp(-j\frac{2\pi m2n}4),m\in[0,3]\\ &=\sum_{n=0}^{1}x(4n)W_2^{mn}+W_4^m\sum_{n=0}^1x(4n+2)W_2^{mn},m\in[0,1]\\ &=x(0)W_2^0+x(4)W_2^m+W_4^m[x(2)W_2^0+x(6)W_2^m],m\in[0,1]\\ &=x(0)+x(4)W_2^m+W_4^m[x(2)+x(6)W_2^m],m\in[0,1]\\ \end{aligned}

X 1 ( 0 ) = x ( 0 ) + x ( 4 ) + x ( 2 ) + x ( 6 ) X 1 ( 1 ) = x ( 0 ) x ( 4 ) + W 4 1 [ x ( 2 ) x ( 6 ) ] X_1(0)=x(0)+x(4)+x(2)+x(6)\\ X_1(1)=x(0)-x(4)+W_4^1[x(2)-x(6)]
考虑 m + 2 [ 2 , 3 ] m+2\in[2,3] 的情况
X 1 ( m + 2 ) = n = 0 1 x ( 4 n ) W 2 ( m + 2 ) n + W 4 m + 2 n = 0 1 x ( 4 n + 2 ) W 2 ( m + 2 ) n , m [ 0 , 1 ] = n = 0 1 x ( 4 n ) W 2 m n exp ( j 2 π n ) + W 4 m exp ( j π ) n = 0 1 x ( 4 n + 2 ) W 2 m n exp ( j 2 π n ) , m [ 0 , 1 ] = n = 0 1 x ( 4 n ) W 2 m n W 4 m n = 0 1 x ( 4 n + 2 ) W 2 ( m + 2 ) n , m [ 0 , 1 ] = x ( 0 ) W 2 0 + x ( 4 ) W 2 m W 4 m [ x ( 2 ) W 2 0 + x ( 6 ) W 2 m ] , m [ 0 , 1 ] = x ( 0 ) + x ( 4 ) W 2 m W 4 m [ x ( 2 ) + x ( 6 ) W 2 m ] , m [ 0 , 1 ] \begin{aligned} X_1(m+2)&=\sum_{n=0}^{1}x(4n)W_2^{(m+2)n}+W_4^{m+2}\sum_{n=0}^1x(4n+2)W_2^{(m+2)n},m\in[0,1]\\ &=\sum_{n=0}^{1}x(4n)W_2^{mn}\exp(-j2\pi n)+W_4^{m}\exp(-j\pi)\sum_{n=0}^1x(4n+2)W_2^{mn}\exp(-j2\pi n),m\in[0,1]\\ &=\sum_{n=0}^{1}x(4n)W_2^{mn}-W_4^{m}\sum_{n=0}^1x(4n+2)W_2^{(m+2)n},m\in[0,1]\\ &=x(0)W_2^0+x(4)W_2^m-W_4^m[x(2)W_2^0+x(6)W_2^m],m\in[0,1]\\ &=x(0)+x(4)W_2^m-W_4^m[x(2)+x(6)W_2^m],m\in[0,1]\\ \end{aligned}

X 1 ( 2 ) = x ( 0 ) + x ( 4 ) [ x ( 2 ) + x ( 6 ) ] X 1 ( 3 ) = x ( 0 ) x ( 4 ) W 4 1 [ x ( 2 ) x ( 6 ) ] X_1(2)=x(0)+x(4)-[x(2)+x(6)]\\ X_1(3)=x(0)-x(4)-W_4^1[x(2)-x(6)]
2、对 X 2 ( m ) X_2(m) 进行奇偶分解,有
X 2 ( m ) = n = 0 1 x ( 2 ( 2 n ) + 1 ) W 4 m 2 n + n = 0 1 x ( 2 ( 2 n + 1 ) + 1 ) W 4 m ( 2 n + 1 ) , m [ 0 , 3 ] = n = 0 1 x ( 4 n + 1 ) exp ( 2 π m 2 n 4 ) + W 4 m n = 0 1 x ( 4 n + 3 ) exp ( j 2 π m 2 n 4 ) , m [ 0 , 3 ] = n = 0 1 x ( 4 n + 1 ) W 2 m n + W 4 m n = 0 1 x ( 4 n + 3 ) W 2 m n , m [ 0 , 1 ] = x ( 1 ) W 2 0 + x ( 5 ) W 2 m + W 4 m [ x ( 3 ) W 2 0 + x ( 7 ) W 2 m ] , m [ 0 , 1 ] = x ( 1 ) + x ( 5 ) W 2 m + W 4 m [ x ( 3 ) + x ( 7 ) W 2 m ] , m [ 0 , 1 ] \begin{aligned} X_2(m)&=\sum_{n=0}^{1}x(2(2n)+1)W_4^{m2n}+\sum_{n=0}^1x(2(2n+1)+1)W_4^{m(2n+1)},m\in[0,3]\\ &=\sum_{n=0}^{1}x(4n+1)\exp(-\frac{2\pi m2n}{4})+W_4^m\sum_{n=0}^1x(4n+3)\exp(-j\frac{2\pi m2n}4),m\in[0,3]\\ &=\sum_{n=0}^{1}x(4n+1)W_2^{mn}+W_4^m\sum_{n=0}^1x(4n+3)W_2^{mn},m\in[0,1]\\ &=x(1)W_2^0+x(5)W_2^m+W_4^m[x(3)W_2^0+x(7)W_2^m],m\in[0,1]\\ &=x(1)+x(5)W_2^m+W_4^m[x(3)+x(7)W_2^m],m\in[0,1]\\ \end{aligned}

X 2 ( 0 ) = x ( 1 ) + x ( 5 ) + x ( 3 ) + x ( 7 ) X 2 ( 1 ) = x ( 1 ) x ( 5 ) + W 4 1 [ x ( 3 ) x ( 7 ) ] X_2(0)=x(1)+x(5)+x(3)+x(7)\\ X_2(1)=x(1)-x(5)+W_4^1[x(3)-x(7)]
考虑 m + 2 [ 2 , 3 ] m+2\in[2,3] 的情况
X 2 ( m + 2 ) = n = 0 1 x ( 4 n + 1 ) W 2 ( m + 2 ) n + W 4 m + 2 n = 0 1 x ( 4 n + 3 ) W 2 ( m + 2 ) n , m [ 0 , 1 ] = n = 0 1 x ( 4 n + 1 ) W 2 m n exp ( j 2 π n ) + W 4 m exp ( j π ) n = 0 1 x ( 4 n + 3 ) W 2 m n exp ( j 2 π n ) , m [ 0 , 1 ] = n = 0 1 x ( 4 n + 1 ) W 2 m n W 4 m n = 0 1 x ( 4 n + 3 ) W 2 m n , m [ 0 , 1 ] = x ( 1 ) W 2 0 + x ( 5 ) W 2 m W 4 m [ x ( 3 ) W 2 0 + x ( 7 ) W 2 m ] , m [ 0 , 1 ] = x ( 1 ) + x ( 5 ) W 2 m W 4 m [ x ( 3 ) + x ( 7 ) W 2 m ] , m [ 0 , 1 ] \begin{aligned} X_2(m+2)&=\sum_{n=0}^{1}x(4n+1)W_2^{(m+2)n}+W_4^{m+2}\sum_{n=0}^1x(4n+3)W_2^{(m+2)n},m\in[0,1]\\ &=\sum_{n=0}^{1}x(4n+1)W_2^{mn}\exp(-j2\pi n)+W_4^{m}\exp(-j\pi)\sum_{n=0}^1x(4n+3)W_2^{mn}\exp(-j2\pi n),m\in[0,1]\\ &=\sum_{n=0}^{1}x(4n+1)W_2^{mn}-W_4^{m}\sum_{n=0}^1x(4n+3)W_2^{mn},m\in[0,1]\\ &=x(1)W_2^0+x(5)W_2^m-W_4^m[x(3)W_2^0+x(7)W_2^m],m\in[0,1]\\ &=x(1)+x(5)W_2^m-W_4^m[x(3)+x(7)W_2^m],m\in[0,1]\\ \end{aligned}

X 2 ( 2 ) = x ( 1 ) + x ( 5 ) [ x ( 3 ) + x ( 7 ) ] X 2 ( 3 ) = x ( 1 ) x ( 5 ) W 4 1 [ x ( 3 ) x ( 7 ) ] X_2(2)=x(1)+x(5)-[x(3)+x(7)]\\ X_2(3)=x(1)-x(5)-W_4^1[x(3)-x(7)]
X 1 ( m ) X_1(m) X 2 ( m ) X_2(m) 分解后的表达式代回 X ( m ) X(m) X ( m + 4 ) X(m+4) 中,有
X ( m ) = X 1 ( m ) + W 8 m X 2 ( m ) X ( m + 2 ) = X 1 ( m + 2 ) + W 8 m + 2 X 2 ( m + 2 ) X ( m + 4 ) = X 1 ( m ) W 8 m X 2 ( m ) X ( ( m + 2 ) + 4 ) = X 1 ( m + 2 ) W 8 m + 2 X 2 ( m + 2 ) m [ 0 , 1 ] \begin{aligned} X(m)&=X_1(m)+W_8^mX_2(m)\\ X(m+2)&=X_1(m+2)+W_8^{m+2}X_2(m+2)\\ X(m+4)&=X_1(m)-W_8^mX_2(m)\\ X((m+2)+4)&=X_1(m+2)-W_8^{m+2}X_2(m+2)\\ m&\in[0,1] \end{aligned}
m [ 0 , 1 ] m\in[0,1] 代入,得到 X ( 0 ) , X ( 1 ) , . . . , X ( 7 ) X(0),X(1),...,X(7) 的表达式
X ( 0 ) = x ( 0 ) + x ( 4 ) + x ( 2 ) + x ( 6 ) + x ( 1 ) + x ( 5 ) + x ( 3 ) + x ( 7 ) X ( 1 ) = x ( 0 ) x ( 4 ) + W 4 1 [ x ( 2 ) x ( 6 ) ] + W 8 1 { x ( 1 ) x ( 5 ) + W 4 1 [ x ( 3 ) x ( 7 ) ] } X ( 2 ) = x ( 0 ) + x ( 4 ) [ x ( 2 ) + x ( 6 ) ] + W 8 2 { x ( 1 ) + x ( 5 ) [ x ( 3 ) + x ( 7 ) ] } X ( 3 ) = x ( 0 ) x ( 4 ) W 4 1 [ x ( 2 ) x ( 6 ) ] + W 8 3 { x ( 1 ) x ( 5 ) W 4 1 [ x ( 3 ) x ( 7 ) ] } X ( 4 ) = x ( 0 ) + x ( 4 ) + x ( 2 ) + x ( 6 ) [ x ( 1 ) + x ( 5 ) + x ( 3 ) + x ( 7 ) ] X ( 5 ) = x ( 0 ) x ( 4 ) + W 4 1 [ x ( 2 ) x ( 6 ) ] W 8 1 { x ( 1 ) x ( 5 ) + W 4 1 [ x ( 3 ) x ( 7 ) ] } X ( 6 ) = x ( 0 ) + x ( 4 ) [ x ( 2 ) + x ( 6 ) ] W 8 2 { x ( 1 ) + x ( 5 ) [ x ( 3 ) + x ( 7 ) ] } X ( 7 ) = x ( 0 ) x ( 4 ) W 4 1 [ x ( 2 ) x ( 6 ) ] W 8 3 { x ( 1 ) x ( 5 ) W 4 1 [ x ( 3 ) x ( 7 ) ] } \begin{aligned} X(0)&=x(0)+x(4)+x(2)+x(6)+x(1)+x(5)+x(3)+x(7)\\ X(1)&=x(0)-x(4)+W_4^1[x(2)-x(6)]+W_8^1\{x(1)-x(5)+W_4^1[x(3)-x(7)]\}\\ X(2)&=x(0)+x(4)-[x(2)+x(6)]+W_8^2\{x(1)+x(5)-[x(3)+x(7)]\}\\ X(3)&=x(0)-x(4)-W_4^1[x(2)-x(6)]+W_8^3\{x(1)-x(5)-W_4^1[x(3)-x(7)]\}\\ X(4)&=x(0)+x(4)+x(2)+x(6)-[x(1)+x(5)+x(3)+x(7)]\\ X(5)&=x(0)-x(4)+W_4^1[x(2)-x(6)]-W_8^1\{x(1)-x(5)+W_4^1[x(3)-x(7)]\}\\ X(6)&=x(0)+x(4)-[x(2)+x(6)]-W_8^2\{x(1)+x(5)-[x(3)+x(7)]\}\\ X(7)&=x(0)-x(4)-W_4^1[x(2)-x(6)]-W_8^3\{x(1)-x(5)-W_4^1[x(3)-x(7)]\}\\ \end{aligned}

X ( 0 ) = x ( 0 ) + x ( 4 ) + x ( 2 ) + x ( 6 ) + x ( 1 ) + x ( 5 ) + x ( 3 ) + x ( 7 ) X ( 1 ) = x ( 0 ) x ( 4 ) j [ x ( 2 ) x ( 6 ) ] + exp ( j π 4 ) { x ( 1 ) x ( 5 ) j [ x ( 3 ) x ( 7 ) ] } X ( 2 ) = x ( 0 ) + x ( 4 ) [ x ( 2 ) + x ( 6 ) ] j { x ( 1 ) + x ( 5 ) [ x ( 3 ) + x ( 7 ) ] } X ( 3 ) = x ( 0 ) x ( 4 ) + j [ x ( 2 ) x ( 6 ) ] + exp ( j 3 π 4 ) { x ( 1 ) x ( 5 ) + j [ x ( 3 ) x ( 7 ) ] } X ( 4 ) = x ( 0 ) + x ( 4 ) + x ( 2 ) + x ( 6 ) [ x ( 1 ) + x ( 5 ) + x ( 3 ) + x ( 7 ) ] X ( 5 ) = x ( 0 ) x ( 4 ) j [ x ( 2 ) x ( 6 ) ] exp ( j π 4 ) { x ( 1 ) x ( 5 ) j [ x ( 3 ) x ( 7 ) ] } X ( 6 ) = x ( 0 ) + x ( 4 ) [ x ( 2 ) + x ( 6 ) ] + j { x ( 1 ) + x ( 5 ) [ x ( 3 ) + x ( 7 ) ] } X ( 7 ) = x ( 0 ) x ( 4 ) + j [ x ( 2 ) x ( 6 ) ] exp ( j 3 π 4 ) { x ( 1 ) x ( 5 ) + j [ x ( 3 ) x ( 7 ) ] } \begin{aligned} X(0)&=x(0)+x(4)+x(2)+x(6)+x(1)+x(5)+x(3)+x(7)\\ X(1)&=x(0)-x(4)-j[x(2)-x(6)]+\exp(-j\frac{\pi}4)\{x(1)-x(5)-j[x(3)-x(7)]\}\\ X(2)&=x(0)+x(4)-[x(2)+x(6)]-j\{x(1)+x(5)-[x(3)+x(7)]\}\\ X(3)&=x(0)-x(4)+j[x(2)-x(6)]+\exp(-j\frac{3\pi}4)\{x(1)-x(5)+j[x(3)-x(7)]\}\\ X(4)&=x(0)+x(4)+x(2)+x(6)-[x(1)+x(5)+x(3)+x(7)]\\ X(5)&=x(0)-x(4)-j[x(2)-x(6)]-\exp(-j\frac{\pi}4)\{x(1)-x(5)-j[x(3)-x(7)]\}\\ X(6)&=x(0)+x(4)-[x(2)+x(6)]+j\{x(1)+x(5)-[x(3)+x(7)]\}\\ X(7)&=x(0)-x(4)+j[x(2)-x(6)]-\exp(-j\frac{3\pi}4)\{x(1)-x(5)+j[x(3)-x(7)]\}\\ \end{aligned}

猜你喜欢

转载自blog.csdn.net/u011861755/article/details/106832974