【总结】博弈论概念

一般地,我们把满足

  1. 有两名选手;
  2. 两名选手交替对游戏进行移动,每走一步,选手可以在(一般而言)有限的合动集合中任选一种进行移动;
  3. 对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作、以前的任何操作、骰子的点数或者其它什么因素;
  4. 如果轮到某名选手移动,且这个局面的合法的移动集合为空(也就是说此时无法进行移动),则这名选手负。

的模型叫做公平组合游戏

如果一状态下先手玩家无法获胜,则称该状态为必败态;类似地,如果一状态下先手玩家可以使后手玩家无法获胜,则称该状态为必胜态。

根据定义,我们有:

  1. 若一状态下,当前玩家无合法移动方案(即:合法方案集为空),则该状态是必败态;
  2. 若一状态是必败态,则它在当前玩家一合法移动后变成必胜态;
  3. 若一状态是必胜态,则它在当前玩家一合法移动后变成必败态。

威佐夫博弈(Wythoff Game):

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。

可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…n 方括号表示取整函数)奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618…因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

斐波那契博弈:

有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:

1)先手不能在第一次把所有的石子取完,至少取1颗;

2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍。

约定取走最后一个石子的人为赢家,求必败态。

结论:当n为Fibonacci数的时候,必败。

f[i]:1,2,3,5,8,13,21,34,55,89……

猜你喜欢

转载自blog.csdn.net/cqbzlydd/article/details/104174154