牵绳遛狗你我他文明家园每一天,助力共建文明社区,基于YOLOv3开发构建公共场景下未牵绳遛狗检测识别系统

遛狗是每天要打卡的事情,狗狗生性活泼爱动,一天不遛就浑身难受,遛狗最重要的就是要拴绳了,牵紧文明绳是养犬人的必修课。外出遛狗时,主人手上的牵引绳更多是狗狗生命健康的一道重要屏障。每天的社区生活中,相信大家都会或多或少的在路上遇上一些遛狗的人不讲文明不讲武德,出门就是习惯性的不牵绳子遛狗,对于自己不熟悉的狗狗来说我们自然是害怕的,频频报道的狗咬人的事件也是层出不穷,,“狗狗性格温顺不会咬人的”这一类所谓的说辞不是放纵不牵绳子的理由。

对于此类的现象是否能够从技术的角度来进行思考甚至是干预呢?我想理论上来说也是可行的,本文的主要目的就是站在不牵绳遛狗这个大背景下探索基于技术手段来分析对此类行为干预的可行性,这里主要是基于YOLOv3开发构建对应的目标检测模型,我们的设计初衷就是考虑未来这样的技术手段能够结合路边、河道、社区、门口等等的可用的视频摄像头,对于画面中出现的遛狗目标对象进行实时的智能计算分析,如果发现问题就可以通过语音播报提醒,如果还是不加改正就可以将当前的时段视频发送到相关的部门来跟进处理,当然了,这些比较偏向业务应用层面不是我们开发者所能决定的,这里主要是结合我们的所见所想来开发构建实践性质的项目。

前文我们已经进行了相应了开发实践感兴趣的话可以自行移步阅读:

《牵绳遛狗你我他文明家园每一天,助力共建文明社区,基于DETR(DEtection TRansformer)开发构建公共场景下未牵绳遛狗检测识别系统》

首先看下实例效果:

这里没有有效可用的数据集,我们选择的是从网络爬取对应的场景下的数据集然后人工进行数据的标注处理,这里我们讨论商定主要选取的标注对象有两个:狗和狗绳,这里也是借鉴参考了江边禁止垂钓场景下数据的标注策略。

接下来看下数据集:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

本文选择的是yolov3-tiny模型,如下:

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [10,14, 23,27, 37,58]  # P4/16
  - [81,82, 135,169, 344,319]  # P5/32
 
# YOLOv3-tiny backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [16, 3, 1]],  # 0
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
   [-1, 1, Conv, [32, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]],  # 11
   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
  ]
 
# YOLOv3-tiny head
head:
  [[-1, 1, Conv, [1024, 3, 1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)
 
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)
 
   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
  ]

训练配置数据文件如下所示:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 2

 
# class names
names: ['dog', 'rope']

默认100次epoch的迭代计算,终端日志输出如下所示:

等待训练完成后来整体看下结果详情:

【数据分布可视化】

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

感兴趣的话也都可以自行动手尝试下!

猜你喜欢

转载自blog.csdn.net/Together_CZ/article/details/135336356