Google Guava 初识

参考:http://wiki.jikexueyuan.com/project/google-guava-official-tutorial/caches.html

google guava框架提供了内存缓存的功能,可以很方便的缓存对象,设置生命周期, 及缓存对象的弱引用 强应用 软引用等。

Guava Cache:本地缓存实现,支持多种缓存过期策略。

缓存

范例

 LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
            .maximumSize(1000)
            .expireAfterWrite(10, TimeUnit.MINUTES)
            .removalListener(MY_LISTENER)
            .build(
                new CacheLoader<Key, Graph>() {
                    public Graph load(Key key) throws AnyException {
                        return createExpensiveGraph(key);
                    }
            });

适用性

缓存在很多场景下都是相当有用的。例如,计算或检索一个值的代价很高,并且对同样的输入需要不止一次获取值的时候,就应当考虑使用缓存。

Guava Cache 与 ConcurrentMap 很相似,但也不完全一样。最基本的区别是 ConcurrentMap 会一直保存所有添加的元素,直到显式地移除。相对地,Guava Cache 为了限制内存占用,通常都设定为自动回收元素。在某些场景下,尽管 LoadingCache 不回收元素,它也是很有用的,因为它会自动加载缓存

通常来说,Guava Cache 适用于:

  • 你愿意消耗一些内存空间来提升速度。
  • 你预料到某些键会被查询一次以上。
  • 缓存中存放的数据总量不会超出内存容量。(Guava Cache 是单个应用运行时的本地缓存。它不把数据存放到文件或外部服务器。如果这不符合你的需求,请尝试 Memcached 这类工具)

如果你的场景符合上述的每一条,Guava Cache 就适合你。

如同范例代码展示的一样,Cache 实例通过 CacheBuilder 生成器模式获取,但是自定义你的缓存才是最有趣的部分。

:如果你不需要 Cache 中的特性,使用 ConcurrentHashMap 有更好的内存效率——但 Cache 的大多数特性都很难基于旧有的 ConcurrentMap 复制,甚至根本不可能做到。

加载

在使用缓存前,首先问自己一个问题:有没有合理的默认方法来加载或计算与键关联的值?如果有的话,你应当使用 CacheLoader。如果没有,或者你想要覆盖默认的加载运算,同时保留"获取缓存-如果没有-则计算"[get-if-absent-compute]的原子语义,你应该在调用 get 时传入一个 Callable 实例。缓存元素也可以通过 Cache.put 方法直接插入,但自动加载是首选的,因为它可以更容易地推断所有缓存内容的一致性。

扫描二维码关注公众号,回复: 2632262 查看本文章

CacheLoader

LoadingCache 是附带 CacheLoader 构建而成的缓存实现。创建自己的 CacheLoader 通常只需要简单地实现 V load(K key) throws Exception 方法。例如,你可以用下面的代码构建 LoadingCache:

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
            .maximumSize(1000)
            .build(
                new CacheLoader<Key, Graph>() {
                    public Graph load(Key key) throws AnyException {
                        return createExpensiveGraph(key);
                    }
                });

    ...
    try {
        return graphs.get(key);
    } catch (ExecutionException e) {
        throw new OtherException(e.getCause());
    }

从 LoadingCache 查询的正规方式是使用 get(K)方法。这个方法要么返回已经缓存的值,要么使用 CacheLoader 向缓存原子地加载新值。由于 CacheLoader 可能抛出异常,LoadingCache.get(K)也声明为抛出 ExecutionException 异常。如果你定义的 CacheLoader 没有声明任何检查型异常,则可以通过 getUnchecked(K)查找缓存;但必须注意一旦 CacheLoader 声明了检查型异常,就不可以调用 getUnchecked(K)

 LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
            .expireAfterAccess(10, TimeUnit.MINUTES)
            .build(
                new CacheLoader<Key, Graph>() {
                    public Graph load(Key key) { // no checked exception
                        return createExpensiveGraph(key);
                    }
                });

    ...
    return graphs.getUnchecked(key);

getAll(Iterable<? extends K>)方法用来执行批量查询。默认情况下,对每个不在缓存中的键,getAll 方法会单独调用 CacheLoader.load 来加载缓存项。如果批量的加载比多个单独加载更高效,你可以重载 CacheLoader.loadAll 来利用这一点。getAll(Iterable)的性能也会相应提升。

:CacheLoader.loadAll 的实现可以为没有明确请求的键加载缓存值。例如,为某组中的任意键计算值时,能够获取该组中的所有键值,loadAll 方法就可以实现为在同一时间获取该组的其他键值。校注:getAll(Iterable<? extends K>)方法会调用 loadAll,但会筛选结果,只会返回请求的键值对。

Callable

所有类型的 Guava Cache,不管有没有自动加载功能,都支持 get(K, Callable)方法。这个方法返回缓存中相应的值,或者用给定的 Callable 运算并把结果加入到缓存中。在整个加载方法完成前,缓存项相关的可观察状态都不会更改。这个方法简便地实现了模式"如果有缓存则返回;否则运算、缓存、然后返回"。

  Cache<Key, Graph> cache = CacheBuilder.newBuilder()
            .maximumSize(1000)
            .build(); // look Ma, no CacheLoader
    ...
    try {
        // If the key wasn't in the "easy to compute" group, we need to
        // do things the hard way.
        cache.get(key, new Callable<Key, Graph>() {
            @Override
            public Value call() throws AnyException {
                return doThingsTheHardWay(key);
            }
        });
    } catch (ExecutionException e) {
        throw new OtherException(e.getCause());
    }

显式插入

使用 cache.put(key, value)方法可以直接向缓存中插入值,这会直接覆盖掉给定键之前映射的值。使用 Cache.asMap()视图提供的任何方法也能修改缓存。但请注意,asMap 视图的任何方法都不能保证缓存项被原子地加载到缓存中。进一步说,asMap 视图的原子运算在 Guava Cache 的原子加载范畴之外,所以相比于 Cache.asMap().putIfAbsent(K, V),Cache.get(K, Callable) 应该总是优先使用。

缓存回收

一个残酷的现实是,我们几乎一定没有足够的内存缓存所有数据。你你必须决定:什么时候某个缓存项就不值得保留了?Guava Cache 提供了三种基本的缓存回收方式:基于容量回收、定时回收和基于引用回收

基于容量的回收(size-based eviction)

如果要规定缓存项的数目不超过固定值,只需使用 CacheBuilder.maximumSize(long)。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。——警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作——通常来说,这种情况发生在缓存项的数目逼近限定值时。

另外,不同的缓存项有不同的“权重”(weights)——例如,如果你的缓存值,占据完全不同的内存空间,你可以使用 CacheBuilder.weigher(Weigher)指定一个权重函数,并且用 CacheBuilder.maximumWeight(long)指定最大总重。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。

LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
        .maximumWeight(100000)
        .weigher(new Weigher<Key, Graph>() {
            public int weigh(Key k, Graph g) {
                return g.vertices().size();
            }
        })
        .build(
            new CacheLoader<Key, Graph>() {
                public Graph load(Key key) { // no checked exception
                    return createExpensiveGraph(key);
                }
            });

定时回收(Timed Eviction)

CacheBuilder 提供两种定时回收的方法:

  • expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
  • expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。

如下文所讨论,定时回收周期性地在写操作中执行,偶尔在读操作中执行。

测试定时回收

对定时回收进行测试时,不一定非得花费两秒钟去测试两秒的过期。你可以使用 Ticker 接口和 CacheBuilder.ticker(Ticker)方法在缓存中自定义一个时间源,而不是非得用系统时钟。???

基于引用的回收(Reference-based Eviction)

通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache 可以把缓存设置为允许垃圾回收:

  • CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用键的缓存用==而不是 equals 比较键。
  • CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用值的缓存用==而不是 equals 比较值。
  • CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是 equals 比较值。

显式清除

任何时候,你都可以显式地清除缓存项,而不是等到它被回收:

移除监听器

通过 CacheBuilder.removalListener(RemovalListener),你可以声明一个监听器,以便缓存项被移除时做一些额外操作。缓存项被移除时,RemovalListener 会获取移除通知[RemovalNotification],其中包含移除原因[RemovalCause]、键和值。

请注意,RemovalListener 抛出的任何异常都会在记录到日志后被丢弃[swallowed]。

 CacheLoader<Key, DatabaseConnection> loader = new CacheLoader<Key, DatabaseConnection> () {
    public DatabaseConnection load(Key key) throws Exception {
    return openConnection(key);
    }
    };

    RemovalListener<Key, DatabaseConnection> removalListener = new RemovalListener<Key, DatabaseConnection>() {
             public void onRemoval(RemovalNotification<Key, DatabaseConnection> removal) {
             DatabaseConnection conn = removal.getValue();
             conn.close(); // tear down properly
    }
    };

    return CacheBuilder.newBuilder()
                       .expireAfterWrite(2, TimeUnit.MINUTES)
                       .removalListener(removalListener)
                       .build(loader);

警告:默认情况下,监听器方法是在移除缓存时同步调用的。因为缓存的维护和请求响应通常是同时进行的,代价高昂的监听器方法在同步模式下会拖慢正常的缓存请求。在这种情况下,你可以使用 RemovalListeners.asynchronous(RemovalListener, Executor)把监听器装饰为异步操作。

清理什么时候发生?

使用 CacheBuilder 构建的缓存不会"自动"执行清理和回收工作,也不会在某个缓存项过期后马上清理,也没有诸如此类的清理机制。相反,它会在写操作时顺带做少量的维护工作,或者偶尔在读操作时做——如果写操作实在太少的话。

这样做的原因在于:如果要自动地持续清理缓存,就必须有一个线程,这个线程会和用户操作竞争共享锁。此外,某些环境下线程创建可能受限制,这样 CacheBuilder 就不可用了。

相反,我们把选择权交到你手里。如果你的缓存是高吞吐的,那就无需担心缓存的维护和清理等工作。如果你的 缓存只会偶尔有写操作,而你又不想清理工作阻碍了读操作,那么可以创建自己的维护线程,以固定的时间间隔调用 Cache.cleanUp()ScheduledExecutorService 可以帮助你很好地实现这样的定时调度。

刷新

刷新和回收不太一样。正如 LoadingCache.refresh(K)所声明,刷新表示为键加载新值,这个过程可以是异步的。在刷新操作进行时,缓存仍然可以向其他线程返回旧值,而不像回收操作,读缓存的线程必须等待新值加载完成。

如果刷新过程抛出异常,缓存将保留旧值,而异常会在记录到日志后被丢弃[swallowed]。

重载 CacheLoader.reload(K, V)可以扩展刷新时的行为,这个方法允许开发者在计算新值时使用旧的值。

//有些键不需要刷新,并且我们希望刷新是异步完成的
    LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
        .maximumSize(1000)
        .refreshAfterWrite(1, TimeUnit.MINUTES)
        .build(
            new CacheLoader<Key, Graph>() {
                public Graph load(Key key) { // no checked exception
                    return getGraphFromDatabase(key);
                }

                public ListenableFuture<Key, Graph> reload(final Key key, Graph prevGraph) {
                    if (neverNeedsRefresh(key)) {
                        return Futures.immediateFuture(prevGraph);
                    }else{
                        // asynchronous!
                        ListenableFutureTask<Key, Graph> task=ListenableFutureTask.create(new Callable<Key, Graph>() {
                            public Graph call() {
                                return getGraphFromDatabase(key);
                            }
                        });
                        executor.execute(task);
                        return task;
                    }
                }
            });

CacheBuilder.refreshAfterWrite(long, TimeUnit)可以为缓存增加自动定时刷新功能。和 expireAfterWrite 相反,refreshAfterWrite 通过定时刷新可以让缓存项保持可用,但请注意:缓存项只有在被检索时才会真正刷新(如果 CacheLoader.refresh 实现为异步,那么检索不会被刷新拖慢)。因此,如果你在缓存上同时声明 expireAfterWrite 和 refreshAfterWrite,缓存并不会因为刷新盲目地定时重置,如果缓存项没有被检索,那刷新就不会真的发生,缓存项在过期时间后也变得可以回收

其他特性

统计

CacheBuilder.recordStats()用来开启 Guava Cache 的统计功能。统计打开后,Cache.stats()方法会返回 CacheStats 对象以提供如下统计信息:

此外,还有其他很多统计信息。这些统计信息对于调整缓存设置是至关重要的,在性能要求高的应用中我们建议密切关注这些数据。

asMap 视图

asMap 视图提供了缓存的 ConcurrentMap 形式,但 asMap 视图与缓存的交互需要注意:

  • cache.asMap()包含当前所有加载到缓存的项。因此相应地,cache.asMap().keySet()包含当前所有已加载键;
  • asMap().get(key)实质上等同于 cache.getIfPresent(key),而且不会引起缓存项的加载。这和 Map 的语义约定一致。
  • 所有读写操作都会重置相关缓存项的访问时间,包括 Cache.asMap().get(Object)方法和 Cache.asMap().put(K, V)方法,但不包括 Cache.asMap().containsKey(Object)方法,也不包括在 Cache.asMap()的集合视图上的操作。比如,遍历 Cache.asMap().entrySet()不会重置缓存项的读取时间。

中断

缓存加载方法(如 Cache.get)不会抛出 InterruptedException。我们也可以让这些方法支持 InterruptedException,但这种支持注定是不完备的,并且会增加所有使用者的成本,而只有少数使用者实际获益。详情请继续阅读。

Cache.get 请求到未缓存的值时会遇到两种情况:当前线程加载值;或等待另一个正在加载值的线程。这两种情况下的中断是不一样的。等待另一个正在加载值的线程属于较简单的情况:使用可中断的等待就实现了中断支持;但当前线程加载值的情况就比较复杂了:因为加载值的 CacheLoader 是由用户提供的,如果它是可中断的,那我们也可以实现支持中断,否则我们也无能为力

如果用户提供的 CacheLoader 是可中断的,为什么不让 Cache.get 也支持中断?从某种意义上说,其实是支持的:如果 CacheLoader 抛出 InterruptedException,Cache.get 将立刻返回(就和其他异常情况一样);此外,在加载缓存值的线程中,Cache.get 捕捉到 InterruptedException 后将恢复中断,而其他线程中 InterruptedException 则被包装成了 ExecutionException。???

原则上,我们可以拆除包装,把 ExecutionException 变为 InterruptedException,但这会让所有的 LoadingCache 使用者都要处理中断异常,即使他们提供的 CacheLoader 不是可中断的。如果你考虑到所有非加载线程的等待仍可以被中断,这种做法也许是值得的。但许多缓存只在单线程中使用,它们的用户仍然必须捕捉不可能抛出的 InterruptedException 异常。即使是那些跨线程共享缓存的用户,也只是有时候能中断他们的 get 调用,取决于那个线程先发出请求。

对于这个决定,我们的指导原则是让缓存始终表现得好像是在当前线程加载值。这个原则让使用缓存或每次都计算值可以简单地相互切换。如果老代码(加载值的代码)是不可中断的,那么新代码(使用缓存加载值的代码)多半也应该是不可中断的。

如上所述,Guava Cache 在某种意义上支持中断。另一个意义上说,Guava Cache 不支持中断,这使得 LoadingCache 成了一个有漏洞的抽象:当加载过程被中断了,就当作其他异常一样处理,这在大多数情况下是可以的;但如果多个线程在等待加载同一个缓存项,即使加载线程被中断了,它也不应该让其他线程都失败(捕获到包装在 ExecutionException 里的 InterruptedException),正确的行为是让剩余的某个线程重试加载。为此,我们记录了一个 bug。然而,与其冒着风险修复这个 bug,我们可能会花更多的精力去实现另一个建议 AsyncLoadingCache,这个实现会返回一个有正确中断行为的 Future 对象。

猜你喜欢

转载自blog.csdn.net/qq_30336433/article/details/81507815