电压跟随器的作用- -电压跟屁虫有什么作用呢???

导读:,顾名思义,是一种输出电压跟随输入电压的变化而变化的元件,现已广泛应用于电路中,今天小编就带你来瞧一瞧的作用~~~

本文引用地址: http://www.eepw.com.cn/article/270004.htm

的作用- -简介

  电压跟随器是一个共集电极电路,又称为射极输出器,其电压增益为一,具有输入阻抗高,输出阻抗低的特点。电压跟随器的电路图如下图所示:

一- -缓冲

  之一就是缓冲,在一定程度上可以避免由于输出阻抗较高,而下一级输入阻抗较小时产生的信号损耗,起到承上启下的作用。

二- -隔离

  电压跟随器的作用之二就是隔离,由于电压跟随器具有输入阻抗高,输出阻抗低的特点,使得它对上一级电路呈现高阻状态,而对下一级电路呈现低阻状态,常用于中间级,以隔离前后级电路,消除它们之间的相互影响。在HIFI电路中就包含电压跟随器,将其置于前级和功放之间,用于消除扬声器的反电动势对前级的干扰,使得音质更加清晰。

电压跟随器的作用三- -阻抗匹配、提高带载能力

  电压跟随器的作用之三就是阻抗匹配、提高带载能力。由于电压跟随器具有输入阻抗高,而输出阻抗低的特点,使得它在电路中可以完成阻抗匹配的功能,从而使下一级放大电路工作在更好的状态下。在很多电吉他效果器的电路中就包含电压跟随器,接在音色处理电路前面,使得音色更加完美,提高输入阻抗,减小输入电容,为应用高品质的电容提供保证。

  电压跟随器应用于多种电路中,主要起到缓冲、隔离或阻抗匹配、提高带载能力的作用,以下是小编为您推荐的几篇有关电压跟随器的作用的文章,敬请阅读~~~~

,顾名思义,就是输出电压与输入电压是相同的,就是说,的电压放大倍数恒小于且接近1。没有电压放大倍数??那他有什么特点和作用?
的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使的清晰度得到大幅度提高。
下面的几个小电路,就是采用晶体管和场效应管的具体应用,试验一下吧,可能会有意想不到的收获。


构成的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿,而实际电路要复杂的多,问题不可忽视_,希望对实际应用有一点帮助。

  用使运算放大器保持稳定,须注意哪些问题?

  A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。也不例外。

  运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。

  

[转载][转载]使用运放构成电压跟随器的稳定性问题

  FIg1. 电压跟随器和反馈环路

  2. 输入输出端出现相位差的主要原因

  其原因大致可分为两种:

  1,由于运算放大器固有的特性

  2,由于运算放大器以外的反馈环路的特性

  2.1. 运算放大器的特性

  Fig2a 及Fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。数据手册中也有这两张曲线图。

  如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0dB),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。

  反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。

  为此,当环路增益为0dB时的频率所对应的相位与180o之间的差是判断负反馈环路的重要因素,该参数称为相位裕度。(Fig2b.)

  如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。

  注:数据手册注明「建议使用6dB以上的增益」的放大器,不可用作电压跟随器。

  

[转载][转载]使用运放构成电压跟随器的稳定性问题
运算放大器周边电路对反馈环路的影响#e#2.2. 运算放大器周边电路对反馈环路的影响

  在实际应用中,构成电压跟随器并非象Fig1.那样简单地将输入端和输出端直接连接在一起。至少输出端是与某个负载连接在一起的。因此,必须考虑到该负载对放大器的影响。

  例如,如Fig3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。

  (Fig2b.所示之状态可能变化为Fig2c所示之状态)这时,环路增益在输出电阻和C的作用下降低。同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。单纯地在输出端和接地之间连接电容,构成电压跟随器时,每种运算放大器之间的存在差异。

  Fig4.为输入端需要保护电阻的运算放大器可能发生的问题。

  为解决Fig3.出现的问题,可采用Fig5.(a)、(b)所示之方法。(a)图中插入R,消除因CL而产生的反馈环路相位滞后。(在高频区,R作为运算放大器的负荷取代了CL而显现出来。) (b)则用C1来消除CL造成的相位滞后。

  为解决Fig4.的问题,则可在输入保护电阻上并联一个尺寸适当的电容。一般被叫做“输入电容取消值”的近似值约为10pF~100pF。

  

[转载][转载]使用运放构成电压跟随器的稳定性问题

  

[转载][转载]使用运放构成电压跟随器的稳定性问题

  FIg5. FIg3.解决方法

电压跟随器电路图

 
  输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小.

  电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。

  那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。

  共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。


猜你喜欢

转载自blog.csdn.net/u012841414/article/details/78929157