信号和系统的频域分析题目

文章目录

正交集

1.设{ Φ i ( t ) \Phi_i(t) } i = 1 N _{i=1}^N 是N个信号的一组正交集,即:
Φ i ( t ) Φ j ( t ) d t { 0 i = /   j 1 i = j 1 i , j N \int_{-\infty}^{\infty} \Phi_i(t)\Phi^*_j(t)dt\begin{cases} 0\quad i{=}\mathllap{/\,}j \\ 1 \quad i=j \end{cases} 1\leq i,j\leq N
并设 x ( t ) x(t) 是任意信号,假定 x ^ ( t ) = i = 1 N a i Φ i ( t ) \hat{x}(t)=\sum_{i=1}^{N}a_i\Phi_i(t) 是根据{ Φ i ( t ) \Phi_i(t) } i = 1 N _{i=1}^N x ( t ) x(t) 的线性近似。我们感兴趣的问题是寻找 a i a_i 使:
ϵ 2 = x ( t ) x ^ ( t ) 2 d t \epsilon^2=\int_{-\infty}^{\infty}|x(t)-\hat{x}(t)|^2dt
最小化。
1.证明最小化的 a i a_i 满足:
a i = x ( t ) Φ i ( t ) d t a_i=\int_{-\infty}^{\infty}x(t)\Phi^*_i(t)dt
2.证明按如上条件选择 a i a_i 则有:
ϵ m i n 2 = x ( t ) 2 d t i = 1 N a i 2 \epsilon^2_{min}=\int_{-\infty}^{\infty}|x(t)|^2dt - \sum_{i=1}^{N}|a_i|^2

解:

ϵ 2 = x ( t ) x ^ ( t ) 2 d t = [ ( x ( t ) i = 1 N a i Φ i ( t ) ) ( x ( t ) i = 1 N a i Φ i ( t ) ) ] d t = x ( t ) x ( t ) d t a i i = 1 N Φ i ( t ) x ( t ) d t a i i = 1 N Φ i ( t ) x ( t ) d t + i = 1 N j = 1 N a i a j Φ i ( t ) Φ j ( t ) d t \begin{aligned} \epsilon^2 &= \int_{-\infty}^{\infty}|x(t)-\hat{x}(t)|^2dt \\ &= \int_{-\infty}^{\infty}[(x(t)-\sum_{i=1}^N a_i\Phi_i(t))(x^{*}(t) - \sum_{i=1}^N a^{*}_i \Phi_i^{*}(t))]dt \\ &=\int_{-\infty}^{\infty}x(t)x^{*}(t)dt -\int_{-\infty}^{\infty}a_i^{*}\sum_{i=1}^N\Phi_i^{*}(t)x(t)dt-\int_{-\infty}^{\infty}a_i\sum_{i=1}^N \Phi_i(t)x^{*}(t)dt +\int_{-\infty}^{\infty}\sum_{i=1}^N\sum_{j=1}^Na_ia_j^{*}\Phi_i(t)\Phi_j^{*}(t)dt \end{aligned}

而:
i = 1 N j = 1 N a i a j Φ i ( t ) Φ j ( t ) d t = i = 1 N j = 1 N a i a j Φ i ( t ) Φ j ( t ) d t \begin{aligned} \int_{-\infty}^{\infty}\sum_{i=1}^N\sum_{j=1}^Na_ia_j^{*}\Phi_i(t)\Phi_j^{*}(t)dt &= \sum_{i=1}^N\sum_{j=1}^Na_ia_j^{*}\int_{-\infty}^{\infty}\Phi_i(t)\Phi_j^{*}(t)dt \\ \end{aligned}
由于
Φ i ( t ) Φ j ( t ) d t { 0 i = /   j 1 i = j 1 i , j N \int_{-\infty}^{\infty} \Phi_i(t)\Phi^*_j(t)dt\begin{cases} 0\quad i{=}\mathllap{/\,}j \\ 1 \quad i=j \end{cases} 1\leq i,j\leq N

所以
i = 1 N j = 1 N a i a j Φ i ( t ) Φ j ( t ) d t = i = 1 N a i a i \begin{aligned} \sum_{i=1}^N\sum_{j=1}^Na_ia_j^{*}\int_{-\infty}^{\infty}\Phi_i(t)\Phi_j^{*}(t)dt &= \sum_{i=1}^{N}a_ia_i^{*} \end{aligned}


ϵ 2 = x ( t ) x ( t ) d t a i i = 1 N Φ i ( t ) x ( t ) d t a i i = 1 N Φ i ( t ) x ( t ) d t + i = 1 N a i a i = x ( t ) 2 d t + i = 1 N ( a i a i Φ i ( t ) x ( t ) d t ) ( a i a i Φ i ( t ) x ( t ) d t ) i = 1 N Φ i ( t ) x ( t ) d t 2 = x ( t ) 2 d t i = 1 N Φ i ( t ) x ( t ) d t 2 + i = 1 N a i Φ i ( t ) x ( t ) ) d t 2 \begin{aligned} \epsilon^2 &= \int_{-\infty}^{\infty}x(t)x^{*}(t)dt -\int_{-\infty}^{\infty}a_i^{*}\sum_{i=1}^N\Phi_i^{*}(t)x(t)dt-\int_{-\infty}^{\infty}a_i\sum_{i=1}^N \Phi_i(t)x^{*}(t)dt +\sum_{i=1}^{N}a_ia_i^{*} \\ &=\int_{-\infty}^{\infty}\vert x(t) \vert ^2dt +\sum_{i=1}^N(a_i-\int_{-\infty}^{\infty}a_i \Phi_i(t)x^{*}(t)dt)(a_i-\int_{-\infty}^{\infty}a_i\Phi_i(t)x^{*}(t)dt)^{*}-\sum_{i=1}^N\vert \int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt\vert^2 \\ &=\int_{-\infty}^{\infty}\vert x(t) \vert ^2dt - \sum_{i=1}^N\vert \int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt\vert^2 + \sum_{i=1}^N\vert a_i-\int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t))^{*}dt \vert^2 \end{aligned}

前面两项与 a i a_i 无关,后面一项显而易见,当 a i = Φ i ( t ) x ( t ) d t a_i=\int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt 时, ϵ 2 \epsilon^2 有最小值。

a i = Φ i ( t ) x ( t ) d t a_i=\int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt 代入 ϵ 2 \epsilon^2 中,得到

ϵ 2 = x ( t ) 2 d t i = 1 N Φ i ( t ) x ( t ) d t 2 = x ( t ) 2 d t i = 1 N a i 2 ( a i = Φ i ( t ) x ( t ) d t ) \begin{aligned} \epsilon^2 &= \int_{-\infty}^{\infty}\vert x(t) \vert ^2dt - \sum_{i=1}^N\vert \int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt\vert^2\\ &=\int_{-\infty}^{\infty}\vert x(t) \vert ^2dt-\sum_{i=1}^N\vert a_i \vert^2 \quad \quad(a_i=\int_{-\infty}^{\infty}\Phi_i(t)x^{*}(t)dt) \end{aligned}

傅里叶级数

1.确定下列信号的傅里叶级数展开。
1). x 1 ( t ) = n = Λ ( t 2 n ) x_1(t)=\sum_{n=-\infty}^{\infty}\varLambda(t-2n)

2). x 2 ( t ) = n = Λ ( t n ) x_2(t)=\sum_{n=-\infty}^{\infty}\varLambda(t-n)

3). x 3 ( t ) = n = e t n , n t < n + 1 x_3(t)=\sum_{n=-\infty}^{\infty}e^{t-n}, n\leq t<n+1

4). x 4 ( t ) = c o s t + c o s 2.5 t x_4(t)=cost+cos2.5t

5). x 5 ( t ) = n = Λ ( t n ) u ( t n ) x_5(t)=\sum_{n=-\infty}^{\infty}\varLambda(t-n)u(t-n)

6). x 6 ( t ) = n = ( 1 ) n δ ( t n T ) x_6(t)=\sum_{n=-\infty}^{\infty}(-1)^n\delta(t-nT)

7). x 7 ( t ) = n = δ ( t ) x_7(t)=\sum_{n=-\infty}^{\infty}\delta^{'}(t)

8). x 8 ( t ) = c o s 2 π f 0 t x_8(t)=|cos2\pi f_0t| (全波整流器输出)

9). x 9 ( t ) = c o s 2 π f 0 t + c o s 2 π f 0 t x_9(t)=cos2\pi f_0t +|cos2\pi f_0t| (半波整流器输出)

猜你喜欢

转载自blog.csdn.net/The_last_knight/article/details/83870836