## 964A. Splits

Let's define a split of nn as a nonincreasing sequence of positive integers, the sum of which is nn.

For example, the following sequences are splits of 88[4,4][4,4][3,3,2][3,3,2][2,2,1,1,1,1][2,2,1,1,1,1][5,2,1][5,2,1].

The following sequences aren't splits of 88[1,7][1,7][5,4][5,4][11,3][11,−3][1,1,4,1,1][1,1,4,1,1].

The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split [1,1,1,1,1][1,1,1,1,1] is 55, the weight of the split [5,5,3,3,3][5,5,3,3,3] is 22 and the weight of the split [9][9] equals 11.

For a given nn, find out the number of different weights of its splits.

Input

The first line contains one integer nn (1n1091≤n≤109).

Output

Output one integer — the answer to the problem.

Examples
input
Copy
7

output
Copy
4

input
Copy
8

output
Copy
5

input
Copy
9

output
Copy
5

Note

In the first sample, there are following possible weights of splits of 77:

Weight 1: [77]

Weight 2: [3333, 1]

Weight 3: [222222, 1]

Weight 7: [11111111111111]

#include<iostream>
using namespace std;
int main()
{
long long int n;
while(cin>>n)
{
cout<<n/2+1<<endl;
}
return 0;
}