数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

BST

       即二叉搜索树:

       1.所有非叶子结点至多拥有两个儿子(LeftRight);

       2.所有结点存储一个关键字;

       3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

       如:

       

       BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;

否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入

右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

扫描二维码关注公众号,回复: 1099414 查看本文章

       如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B

的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变BST树结构

插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

       如:

      

   BST树在经过多次插入与删除后,有可能导致不同的结构:

   右边也是一个BST树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的

树结构索引;所以,使用BST树还要考虑尽可能让BST树保持左图的结构,和避免右图的结构,也就

是所谓的“平衡”问题;      

       
AVL平衡二叉搜索
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
  (1)左右子树深度之差的绝对值不超过1;
  (2)左右子树仍然为平衡二叉树.
平衡因子BF=左子树深度-右子树深度.
平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:



 

RBT 红黑树

AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多;
红黑是弱平衡的,用非严格的平衡来换取增删节点时候旋转次数的降低;
所以简单说,搜索的次数远远大于插入和删除,那么选择AVL树,如果搜索,插入删除次数几乎差不多,应该选择RB树。

红黑树上每个结点内含五个域,color,key,left,right,p。如果相应的指针域没有,则设为NIL。
一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
下图所示,即是一颗红黑树:






 

B-

       是一种平衡多路搜索树(并不是二叉的):

       1.定义任意非叶子结点最多只有M个儿子;且M>2

       2.根结点的儿子数为[2, M]

       3.除根结点以外的非叶子结点的儿子数为[M/2, M]

       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

       5.非叶子结点的关键字个数=指向儿子的指针个数-1

       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]

       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]

子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

       8.所有叶子结点位于同一层;

       如:(M=3

       B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果

命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为

空,或已经是叶子结点;

B-树的特性:

       1.关键字集合分布在整颗树中;

       2.任何一个关键字出现且只出现在一个结点中;

       3.搜索有可能在非叶子结点结束;

       4.其搜索性能等价于在关键字全集内做一次二分查找;

       5.自动层次控制;

       由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少

利用率,其最底搜索性能为:

    

       其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

       所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

       由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占

M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

 

 

B+

       B+树是B-树的变体,也是一种多路搜索树:

       1.其定义基本与B-树同,除了:

       2.非叶子结点的子树指针与关键字个数相同;

       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树

B-树是开区间);

       5.为所有叶子结点增加一个链指针;

       6.所有关键字都在叶子结点出现;

       如:(M=3

   B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

       B+的特性:

       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好

是有序的;

       2.不可能在非叶子结点命中;

       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储

(关键字)数据的数据层;

       4.更适合文件索引系统;比如对已经建立索引的数据库记录,查找10<=id<=20,那么只要通过根节点搜索到id=10的叶节点,之后只要根据叶节点的链表找到第一个大于20的就行了,比B-树在查找10到20内的每一个时每次都从根节点出发查找提高了不少效率。

  

B*

       B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

   B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3

(代替B+树的1/2);

       B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据

复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父

结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

       B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分

数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字

(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之

间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

       所以,B*树分配新结点的概率比B+树要低,空间使用率更高;



性能对比

1. 二叉查找树 (Binary Search Tree)

BST 的操作代价分析:

(1) 查找代价

任何一个数据的查找过程都需要从根结点出发,沿某一个路径朝叶子结点前进。因此查找中数据比较次数与树的形态密切相关。 
当树中每个结点左右子树高度大致相同时,树高为logN。则平均查找长度与logN成正比,查找的平均时间复杂度在O(logN)数量级上。 
当先后插入的关键字有序时,BST退化成单支树结构。此时树高n。平均查找长度为(n+1)/2,查找的平均时间复杂度在O(N)数量级上。

(2) 插入代价

新结点插入到树的叶子上,完全不需要改变树中原有结点的组织结构。插入一个结点的代价与查找一个不存在的数据的代价完全相同。

(3) 删除代价

当删除一个结点P,首先需要定位到这个结点P,这个过程需要一个查找的代价。然后稍微改变一下树的形态。如果被删除结点的左、右子树只有一个存在,则改变形态的代价仅为O(1)。如果被删除结点的左、右子树均存在,只需要将当P的左孩子的右孩子的右孩子的…的右叶子结点与P互换,在改变一些左右子树即可。因此删除操作的时间复杂度最大不会超过O(logN)

BST效率总结 :

查找最好时间复杂度O(logN),最坏时间复杂度O(N)。 
插入删除操作算法简单,时间复杂度与查找差不多。

2. 平衡二叉查找树 ( Balanced Binary Search Tree )

二叉查找树在最差情况下竟然和顺序查找效率相当,这是无法仍受的。事实也证明,当存储数据足够大的时候,树的结构对某些关键字的查找效率影响很大。当然,造成这种情况的主要原因就是BST不够平衡(左右子树高度差太大)。既然如此,那么我们就需要通过一定的算法,将不平衡树改变成平衡树。因此,AVL树就诞生了。

AVL 的操作代价分析:

(1) 查找代价

AVL是严格平衡的BST(平衡因子不超过1)。那么查找过程与BST一样,只是AVL不会出现最差情况的BST(单支树)。因此查找效率最好,最坏情况都是O(logN)数量级的。

(2) 插入代价

AVL必须要保证严格平衡(|bf|<=1),那么每一次插入数据使得AVL中某些结点的平衡因子超过1就必须进行旋转操作。事实上,AVL的每一次插入结点操作最多只需要旋转1次(单旋转或双旋转)。因此,总体上插入操作的代价仍然在O(logN)级别上(插入结点需要首先查找插入的位置)。

(3) 删除代价

AVL删除结点的算法可以参见BST的删除结点,但是删除之后必须检查从删除结点开始到根结点路径上的所有结点的平衡因子。因此删除的代价稍微要大一些。每一次删除操作最多需要O(logN)次旋转。因此,删除操作的时间复杂度为O(logN)+O(logN)=O(2logN)

AVL 效率总结 :

查找的时间复杂度维持在O(logN),不会出现最差情况 
AVL树在执行每个插入操作时最多需要1次旋转,其时间复杂度在O(logN)左右。 
AVL树在执行删除时代价稍大,执行每个删除操作的时间复杂度需要O(2logN)。

3. 红黑树 (Red-Black Tree )

二叉平衡树的严格平衡策略以牺牲建立查找结构(插入,删除操作)的代价,换来了稳定的O(logN) 的查找时间复杂度。但是这样做是否值得呢? 
能不能找一种折中策略,即不牺牲太大的建立查找结构的代价,也能保证稳定高效的查找效率呢? 答案就是:红黑树。

RBT 的操作代价分析:

(1) 查找代价

由于红黑树的性质(最长路径长度不超过最短路径长度的2倍),可以说明红黑树虽然不像AVL一样是严格平衡的,但平衡性能还是要比BST要好。其查找代价基本维持在O(logN)左右,但在最差情况下(最长路径是最短路径的2倍少1),比AVL要略逊色一点。

(2) 插入代价

RBT插入结点时,需要旋转操作和变色操作。但由于只需要保证RBT基本平衡就可以了。因此插入结点最多只需要2次旋转,这一点和AVL的插入操作一样。虽然变色操作需要O(logN),但是变色操作十分简单,代价很小。

(3) 删除代价

RBT的删除操作代价要比AVL要好的多,删除一个结点最多只需要3次旋转操作。

RBT 效率总结 :

查找 效率最好情况下时间复杂度为O(logN),但在最坏情况下比AVL要差一些,但也远远好于BST。 
插入删除操作改变树的平衡性的概率要远远小于AVL(RBT不是高度平衡的)。因此需要的旋转操作的可能性要小,而且一旦需要旋转,插入一个结点最多只需要旋转2次,删除最多只需要旋转3次(小于AVL的删除操作所需要的旋转次数)。虽然变色操作的时间复杂度在O(logN),但是实际上,这种操作由于简单所需要的代价很小。

4. B~树/B+树 (B-Tree )

对于在内存中的查找结构而言,红黑树的效率已经非常好了(实际上很多实际应用还对RBT进行了优化)。但是如果是数据量非常大的查找呢?将这些数据全部放入内存组织成RBT结构显然是不实际的。实际上,像OS中的文件目录存储,数据库中的文件索引结构的存储…. 都不可能在内存中建立查找结构。必须在磁盘中建立好这个结构。那么在这个背景下,RBT还是一种好的选择吗? 
在磁盘中组织查找结构,从任何一个结点指向其他结点都有可能读取一次磁盘数据,再将数据写入内存进行比较。大家都知道,频繁的磁盘IO操作,效率是很低下的(机械运动比电子运动要慢不知道多少)。显而易见,所有的二叉树的查找结构在磁盘中都是低效的。因此,B树很好的解决了这一个问题。

B-Tree的操作代价分析:

(1) 查找代价

B-Tree作为一个平衡多路查找树(m-叉)。B树的查找分成两种:一种是从一个结点查找另一结点的地址的时候,需要定位磁盘地址(查找地址),查找代价极高。另一种是将结点中的有序关键字序列放入内存,进行优化查找(可以用折半),相比查找代价极低。而B树的高度很小,因此在这一背景下,B树比任何二叉结构查找树的效率都要高很多。而且B+树作为B树的变种,其查找效率更高

(2)插入代价

B-Tree的插入会发生结点的分裂操作。当插入操作引起了s个节点的分裂时,磁盘访问的次数为h(读取搜索路径上的节点)+2s(回写两个分裂出的新节点)+1(回写新的根节点或插入后没有导致分裂的节点)。因此,所需要的磁盘访问次数是h+2s+1,最多可达到3h+1。因此插入的代价是很大的。

(3)删除代价

B-Tree的删除会发生结点合并操作。最坏情况下磁盘访问次数是3h=(找到包含被删除元素需要h次读访问)+(获取第2至h层的最相邻兄弟需要h-1次读访问)+(在第3至h层的合并需要h-2次写访问)+(对修改过的根节点和第2层的两个节点进行3次写访问)。

B-Tree效率总结:

由于考虑磁盘储存结构,B树的查找、删除、插入的代价都远远要小于任何二叉结构树(读写磁盘次数的降低)。


小结

       B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于

走右结点;

       B-树:多路搜索树,每个结点存储M/2M个关键字,非叶子结点存储指向关键

字范围的子结点;

       所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

       B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点

中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

       B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率

1/2提高到2/3


猜你喜欢

转载自blog.csdn.net/wy727764020/article/details/71078108