文章目录
一:CF1463F
Max Correct Set
有一个结论:以 x + y x+y x+y为周期排列填充一定是不劣于最后的答案的
令 p = x + y , r = n % p p=x+y,r=n\%p p=x+y,r=n%p
⌊ n p ⌋ \lfloor\frac{n}{p}\rfloor ⌊pn⌋出现次数为 t t t次,则 r r r的出现次数为 t + 1 t+1 t+1,预处理一下即可
设 d p i , s dp_{i,s} dpi,s表示一段 p p p中的某个点 i i i为断点,最后 m a x ( x , y ) max(x,y) max(x,y)位的状态为 j j j的答案数
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n, x, y;
int dp[2][1 << 22], val[50];
int main() {
scanf( "%d %d %d", &n, &x, &y );
int p = x + y, r = n % p;
for( int i = 0;i < p;i ++ )
val[i] = n / p + ( i < r );
int S = 1 << max( x, y );
memset( dp, -1, sizeof( dp ) );
dp[1][0] = 0;
for( int i = 0;i < p;i ++ ) {
int now = i & 1;
memset( dp[now], -1, sizeof( dp[now] ) );
for( int j = 0;j < S;j ++ )
if( ~ dp[now ^ 1][j] ) {
dp[now][j << 1 & S - 1] = max( dp[now][j << 1 & S - 1], dp[now ^ 1][j] );
if( ! ( 1 << x - 1 & j ) && ! ( 1 << y - 1 & j ) )
dp[now][j << 1 & S - 1 | 1] = max( dp[now][j << 1 & S - 1 | 1], dp[now ^ 1][j] + val[i] );
}
}
int ans = 0;
for( int i = 0;i < S;i ++ )
ans = max( ans, dp[( p - 1 ) & 1][i] );
printf( "%d\n", ans );
return 0;
}
二:CF1152F2
Neko Rules the Catniverse (Large Version)
简单版:
设 d p i , j , s dp_{i,j,s} dpi,j,s:表示前 i i i个数,从中选了 j j j个,离 i i i最近的 m m m个元素是否选择的状态 s s s
考虑转移到 i + 1 i+1 i+1
i i i不选,直接转移到 d p i + 1 , j , s > > 1 dp_{i+1,j,s>>1} dpi+1,j,s>>1,(舍去距离 i i i为 m m m的元素,该元素距离 i + 1 i+1 i+1变成了 m + 1 m+1 m+1,丢掉
i i i选,那么这个元素可以放在最后距离 ≤ m \le m ≤m个元素中选了的元素后面,或者放在第一个(目前 i i i是最大的,一定可以放在最前面
#include <cstdio>
#define int long long
#define mod 1000000007
int n, k, m;
int dp[100005][14][1 << 4];
signed main() {
scanf( "%lld %lld %lld", &n, &k, &m );
dp[0][0][0] = 1;
for( int i = 0;i < n;i ++ )
for( int j = 0;j <= k;j ++ )
for( int s = 0;s < ( 1 << m );s ++ ) {
dp[i + 1][j][s >> 1] = ( dp[i + 1][j][s >> 1] + dp[i][j][s] ) % mod;
dp[i + 1][j + 1][s >> 1 | 1 << m - 1] = ( dp[i + 1][j + 1][s >> 1 | 1 << m - 1] + dp[i][j][s] * ( __builtin_popcount( s ) + 1 ) % mod ) % mod;
}
int ans = 0;
for( int i = 0;i < ( 1 << m );i ++ )
ans = ( ans + dp[n][k][i] ) % mod;
printf( "%lld\n", ans );
return 0;
}
加强版是建立在发现简单版的第二维和第三维大小一共在 210 210 210左右
是可以用矩阵快速幂优化的,把第二维和第三维压在一起重新编号代替
#include <cstdio>
#include <cstring>
#define int long long
#define mod 1000000007
int n, k, m, cnt;
int id[15][20];
struct matrix {
int c[210][210];//2^4*13=208
matrix() {
memset( c, 0, sizeof( c ) );
}
matrix operator * ( matrix &v ) {
matrix ans;
for( int i = 1;i <= cnt;i ++ )
for( int j = 1;j <= cnt;j ++ )
for( int k = 1;k <= cnt;k ++ )
ans[i][j] = ( ans[i][j] + c[i][k] * v[k][j] % mod ) % mod;
return ans;
}
int *operator [] ( int x ) {
return c[x]; }
}g, f;
signed main() {
scanf( "%lld %lld %lld", &n, &k, &m );
for( int i = 0;i <= k;i ++ )
for( int j = 0;j < ( 1 << m );j ++ )
id[i][j] = ++ cnt;
for( int i = 0;i <= k;i ++ )
for( int s = 0;s < ( 1 << m );s ++ ) {
// int t = s << 1 & ( ( 1 << m ) - 1 );
// ( g[id[i][s]][id[i][t]] += 1 ) %= mod;
// if( i < k ) ( g[id[i][s]][id[i + 1][t | 1] += __builtin_popcount( s ) + 1 ) %= mod;
//两种写法均是正确的
( g[id[i][s]][id[i][s >> 1]] += 1 ) %= mod;
if( i < k ) ( g[id[i][s]][id[i + 1][s >> 1 | 1 << m - 1]] += __builtin_popcount( s ) + 1 ) %= mod;
}
f[1][1] = 1;
while( n ) {
if( n & 1 ) f = f * g;
g = g * g;
n >>= 1;
}
int ret = 0;
for( int i = 0;i < ( 1 << m );i ++ )
ret = ( ret + f[1][id[k][i]] ) % mod;
printf( "%lld\n", ret );
return 0;
}
三:CF1342F
Make It Ascending
设 d p i , j , s dp_{i,j,s} dpi,j,s:表示划分了 i i i个集合,最后一个集合的合并点在 j j j,最后一个集合选择的点状态为 s s s
小贪心:一个集合的合并点肯定越靠前越好,集合的和在大于上一个集合的条件下越小越好;这样都是为了增大后面再划分一个集合的概率
预处理集合为 s s s的 a a a值和,然后直接转移就没了o(=·ω·=)m
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define INF 0x7f7f7f7f
int T, n;
int a[16], sum[1 << 15], id[16];
pair < int, int > pre[16][16][1 << 15];
int f[16][16][1 << 15];
void opt( int x ) {
for( int i = x;i < n;i ++) id[i] --;
}
void print( int i, int pos, int s ) {
if( ! s ) return;
int lst = pre[i][pos][s].first, t = lst ^ s;
for( int k = 0;k < n;k ++ )
if( k != ( pos - 1 ) && ( 1 << k & t ) ) {
printf( "%d %d\n", id[k], id[pos - 1] );
opt( k );
}
print( i - 1, pre[i][pos][s].second, lst );
}
void solve() {
scanf( "%d", &n );
for( int i = 0;i < n;i ++ )
scanf( "%d", &a[i] );
int S = 1 << n;
for( int i = 1;i < S;i ++ )
sum[i] = a[__builtin_ctz( i )] + sum[i & ( i - 1 )];
for( int i = 0;i <= n;i ++ )
for( int j = 0;j <= n;j ++ )
memset( f[i][j], 0x7f, sizeof( int ) * S );
f[0][0][0] = 0;
for( int i = 0;i < n;i ++ )
for( int s = 0;s < S;s ++ )
for( int j = 0;j < n;j ++ ) {
if( f[i][j][s] == INF ) continue;
int t = ( S - 1 ) ^ s;
for( int k = t;k;k = ( k - 1 ) & t ) {
if( sum[k] <= f[i][j][s] || ! ( k >> j ) ) continue;
int pos = j + __builtin_ctz( k >> j ) + 1;
if( f[i + 1][pos][s | k] > sum[k] ) {
f[i + 1][pos][s | k] = sum[k];
pre[i + 1][pos][s | k] = make_pair( s, j );
}
}
}
for( int i = 0;i < n;i ++ ) id[i] = i + 1;
for( int i = n;i;i -- )
for( int j = 1;j <= n;j ++ )
if( f[i][j][S - 1] != INF ) {
printf( "%d\n", n - i );
print( i, j, S - 1 );
return;
}
}
int main() {
scanf( "%d", &T );
while( T -- ) solve();
return 0;
}