[C#][winform]基于yolov8的DMS驾驶员抽烟打电话喝水吃东西检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面

【重要说明】

该系统以opencvsharp作图像处理,onnxruntime做推理引擎,使用CPU进行推理,适合有显卡或者没有显卡windows x64系统均可,不支持macOS和Linux系统,不支持x86的windows操作系统。由于采用CPU推理,要比GPU慢。为了适合大部分操作系统我们暂时只写了CPU推理源码,GPU推理源码后期根据需要可能会调整,目前只考虑CPU推理,主要是为了照顾现在大部分使用该源码是学生,很多人并没有显卡的电脑情况。

【算法介绍】

基于YOLOv8的DMS(驾驶员监控系统)驾驶员抽烟、打电话、喝水、吃东西检测系统是一种利用先进计算机视觉技术的实时监测系统。该系统通过YOLOv8算法,一种在速度和准确性上均表现优异的实时目标检测算法,实现对驾驶员行为的实时监测。

该系统能够自动接收视频或图像输入,通过单次神经网络前向传播,即可快速准确地检测并识别出驾驶员是否在抽烟、打电话、喝水或吃东西等分心行为。这些检测不仅基于图像中的物体识别,还结合了人脸和手部的位置关系、嘴部区域特征等多维度信息,以提高检测的准确性。

为了训练这一系统,研究人员构建了包含大量标注图像的数据集,这些图像覆盖了各种驾驶环境下的分心行为实例。通过深度学习和优化,系统能够在复杂环境中稳定工作,为驾驶安全提供有力保障。

此外,该系统还具备实时预警功能,当检测到分心行为时,会立即通过声音、震动或视觉警告提醒驾驶员,有效降低因分心驾驶导致的事故风险。该系统在交通安全监控领域具有广泛应用前景,有望成为未来智能车辆不可或缺的一部分。

【效果展示】

【测试环境】

windows10 x64系统
VS2019
netframework4.7.2
opencvsharp4.8.0
onnxruntime1.16.3

【模型可以检测出类别】

Sleepy
Cigarette
Drinking
Phone
microsleep
HandsOnWheel
Eating
HandsNotOnWheel
Seatbelt

【训练数据集】

[数据集][目标检测]DMS驾驶员抽烟打电话喝水吃东西检测数据集VOC+YOLO格式5743张9类别_喝水打电话抽烟数据集-CSDN博客

【训练信息】

参数
训练集图片数 5168
验证集图片数 575
训练map 91.3%
训练精度(Precision) 90.8%
训练召回率(Recall) 84.8%

验证集map信息

Class

Images

Instances

P

R

mAP50

mAP50-95

all

575

646

0.901

0.848

0.913

0.665

Sleepy

133

133

0.938

0.97

0.985

0.729

Cigarette

77

77

0.914

0.714

0.846

0.523

Drinking

164

164

0.809

0.799

0.818

0.519

Phone

10

10

0.75

0.5

0.75

0.513

microsleep

45

45

0.89

0.903

0.959

0.745

HandsOnWheel

24

24

1

0.951

0.979

0.74

Eating

54

54

0.98

0.963

0.993

0.776

HandsNotOnWheel

38

38

0.926

0.99

0.987

0.792

Seatbelt

100

101

0.9

0.842

0.898

0.649

【部分实现源码】

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;
 
namespace FIRC
{
    public partial class Form1 : Form
    {
 
        public bool videoStart = false;//视频停止标志
        string weightsPath = Application.StartupPath + "\\weights";//模型目录
        string labelTxt= Application.StartupPath + "\\weights\\class_names.txt";//类别文件
        Yolov8Manager detetor = new Yolov8Manager();//推理引擎
        public Form1()
        {
            InitializeComponent();
            CheckForIllegalCrossThreadCalls = false;//线程更新控件不报错
        }
        private void LoadWeightsFromDir()
        {
            var di = new DirectoryInfo(weightsPath);
            foreach(var fi in di.GetFiles("*.onnx"))
            {
                comboBox1.Items.Add(fi.Name);
            }
            if(comboBox1.Items.Count>0)
            {
                comboBox1.SelectedIndex = 0;
            }
            else
            {
                tssl_show.Text = "未找到模型,请关闭程序,放入模型到weights文件夹!";
                tsb_pic.Enabled = false;
                tsb_video.Enabled = false;
                tsb_camera.Enabled = false;
            }
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            LoadWeightsFromDir();//从目录加载模型
        }
        public string GetResultString(Result result)
        {
            Dictionary<string, int> resultDict = new Dictionary<string, int>();
            for (int i = 0; i < result.length; i++)
            {
                if(resultDict.ContainsKey( result.classes[i]) )
                {
                    resultDict[result.classes[i]]++;
                }
                else
                {
                    resultDict[result.classes[i]]=1;
                }
            }
 
            var resultStr = "";
            foreach(var item in resultDict)
            {
                resultStr += string.Format("{0}:{1}\n",item.Key,item.Value);
            }
            return resultStr;
        }
        private void tsb_pic_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
            if (ofd.ShowDialog() != DialogResult.OK) return;
            tssl_show.Text = "正在检测中...";
            Task.Run(() => {
                var sw = new Stopwatch();
                sw.Start();
                Mat image = Cv2.ImRead(ofd.FileName);
                detetor.Confidence =Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                var results=detetor.Inference(image);
                
                var resultImage = detetor.DrawImage(OpenCvSharp.Extensions.BitmapConverter.ToBitmap(image), results);
    
                sw.Stop();
                pb_show.Image = resultImage;
                tb_res.Text = GetResultString(results);
                tssl_show.Text = "检测已完成!总计耗时"+sw.Elapsed.TotalSeconds+"秒";
            });
           
 
 
        }
 
        public void VideoProcess(string videoPath)
        {
            Task.Run(() => {
 
                detetor.Confidence = Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                VideoCapture capture = new VideoCapture(videoPath);
                if (!capture.IsOpened())
                {
                    tssl_show.Text="视频打开失败!";
                    return;
                }
                Mat frame = new Mat();
                var sw = new Stopwatch();
                int fps = 0;
                while (videoStart)
                {
 
                    capture.Read(frame);
                    if (frame.Empty())
                    {
                        Console.WriteLine("data is empty!");
                        break;
                    }
                    sw.Start();
                    var results = detetor.Inference(frame);
                    var resultImg = detetor.DrawImage(frame,results);
                    sw.Stop();
                    fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
                    sw.Reset();
                    Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
                    //显示结果
                    pb_show.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultImg);
                    tb_res.Text = GetResultString(results);
                    Thread.Sleep(5);
 
 
                }
 
                capture.Release();
 
                pb_show.Image = null;
                tssl_show.Text = "视频已停止!";
                tsb_video.Text = "选择视频";
 
            });
        }
        public void CameraProcess(int cameraIndex=0)
        {
            Task.Run(() => {
 
                detetor.Confidence = Convert.ToSingle(numericUpDown1.Value);
                detetor.IOU = Convert.ToSingle(numericUpDown2.Value);
                VideoCapture capture = new VideoCapture(cameraIndex);
                if (!capture.IsOpened())
                {
                    tssl_show.Text = "摄像头打开失败!";
                    return;
                }
                Mat frame = new Mat();
                var sw = new Stopwatch();
                int fps = 0;
                while (videoStart)
                {
 
                    capture.Read(frame);
                    if (frame.Empty())
                    {
                        Console.WriteLine("data is empty!");
                        break;
                    }
                    sw.Start();
                    var results = detetor.Inference(frame);
                    var resultImg = detetor.DrawImage(frame, results);
                    sw.Stop();
                    fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
                    sw.Reset();
                    Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
                    //显示结果
                    pb_show.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultImg);
                    tb_res.Text = GetResultString(results);
                    Thread.Sleep(5);
 
 
                }
 
                capture.Release();
 
                pb_show.Image = null;
                tssl_show.Text = "摄像头已停止!";
                tsb_camera.Text = "打开摄像头";
 
            });
        }
        private void tsb_video_Click(object sender, EventArgs e)
        {
            if(tsb_video.Text=="选择视频")
            {
                OpenFileDialog ofd = new OpenFileDialog();
                ofd.Filter = "视频文件(*.*)|*.mp4;*.avi";
                if (ofd.ShowDialog() != DialogResult.OK) return;
                videoStart = true;
                VideoProcess(ofd.FileName);
                tsb_video.Text = "停止";
                tssl_show.Text = "视频正在检测中...";
 
            }
            else
            {
                videoStart = false;
               
            }
        }
 
        private void tsb_camera_Click(object sender, EventArgs e)
        {
            if (tsb_camera.Text == "打开摄像头")
            {
                videoStart = true;
                CameraProcess(0);
                tsb_camera.Text = "停止";
                tssl_show.Text = "摄像头正在检测中...";
 
            }
            else
            {
                videoStart = false;
 
            }
        }
 
        private void tsb_exit_Click(object sender, EventArgs e)
        {
            videoStart = false;
            this.Close();
        }
 
        private void trackBar1_Scroll(object sender, EventArgs e)
        {
            numericUpDown1.Value = Convert.ToDecimal(trackBar1.Value / 100.0f);
        }
 
        private void trackBar2_Scroll(object sender, EventArgs e)
        {
            numericUpDown2.Value = Convert.ToDecimal(trackBar2.Value / 100.0f);
        }
 
        private void numericUpDown1_ValueChanged(object sender, EventArgs e)
        {
            trackBar1.Value = (int)(Convert.ToSingle(numericUpDown1.Value) * 100);
        }
 
        private void numericUpDown2_ValueChanged(object sender, EventArgs e)
        {
            trackBar2.Value = (int)(Convert.ToSingle(numericUpDown2.Value) * 100);
        }
 
        private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
        {
            tssl_show.Text="加载模型:"+comboBox1.Text;
            detetor.LoadWeights(weightsPath+"\\"+comboBox1.Text,labelTxt);
            tssl_show.Text = "模型加载已完成!";
        }
    }
}

【使用步骤】

使用步骤:
(1)首先根据官方框架ultralytics安装教程安装好yolov8环境,并根据官方export命令将自己pt模型转成onnx模型
(2)使用vs2019打开sln项目,选择x64 release并且修改一些必要的参数,比如输入shape等,点击运行即可查看最后效果

特别注意如果运行报错了,请参考我的博文进行重新引用我源码的DLL:[C#]opencvsharp报错System.Memory,Version=4.0.1.2,Culture=neutral,PublicKeyToken=cc7b13fcd2ddd51“版本高于所引_未能加载文件或程序集“system.memory, version=4.0.1.2, culture-CSDN博客

【提供文件】

C#源码
yolov8s.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

【源码下载地址】

https://download.csdn.net/download/FL1623863129/88540395

猜你喜欢

转载自blog.csdn.net/FL1623863129/article/details/143109885