OpenCV与AI深度学习 | 实战 | OpenCV中更稳更快的找圆方法--EdgeDrawing使用演示(详细步骤 + 代码)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:实战 | OpenCV中更稳更快的找圆方法--EdgeDrawing使用演示(详细步骤 + 代码)

导  读

    本文主要介绍如何在OpenCV中使用EdgeDrawing模块查找圆(详细步骤 + 代码)。

背景介绍

    从OpenCV4.5.2开始,Contrib模块中封装了开源库ED_Lib用于查找图像中的直线、线段、椭圆和圆。Github地址:

https://github.com/CihanTopal/ED_Lib

    算法原理简介:

    边缘绘制(ED)算法是一种解决边缘检测问题的主动方法。与许多其他遵循减法方法的现有边缘检测算法相比(即在图像上应用梯度滤波器后,根据多种规则消除像素,例如 Canny 中的非极大值抑制和滞后),ED 算法通过加法策略工作,即逐一选取边缘像素,因此称为“边缘绘制”。然后我们处理这些随机形状的边缘段以提取更高级别的边缘特征,即直线、圆、椭圆等。从阈值梯度幅度中提取边缘像素的流行方法是非极大值抑制,它测试每个像素是否具有最大值沿其梯度方向的梯度响应,如果没有则消除。然而,此方法不检查相邻像素的状态,因此可能会导致低质量(在边缘连续性、平滑度、薄度、定位方面)边缘片段。ED 不是非极大值抑制,而是指向一组边缘像素,并通过最大化边缘段的总梯度响应来将它们连接起来。因此,它可以提取高质量的边缘片段,而不需要额外的滞后步骤。

    OpenCV中使用介绍文档

https://docs.opencv.org/4.5.2/d1/d1c/classcv_1_1ximgproc_1_1EdgeDrawing.html

使用步骤

    EdgeDrawing类是在Contrib的ximgproc模块中,C++中使用它需要满足以下条件:

    ① OpenCV >= 4.5.2

    ② CMake编译Contrib模块

    ③ 包含edge_drawing.hpp头文件

    Python中使用需要安装opencv-python-contrib >=4.5.2

【1】Python中使用演示:

#公众号--OpenCV与AI深度学习
'''
This example illustrates how to use cv.ximgproc.EdgeDrawing class.
Usage:
    ed.py [<image_name>]    
    image argument defaults to board.jpg
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import random as rng
import sys

rng.seed(12345)

def main():
    try:
        fn = sys.argv[1]
    except IndexError:
        fn = 'board.jpg'
    
    src = cv.imread(cv.samples.findFile(fn))
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    cv.imshow("source", src)
    
    ssrc = src.copy() * 0
    lsrc = src.copy()
    esrc = src.copy()
    
    ed = cv.ximgproc.createEdgeDrawing()
    # you can change parameters (refer the documentation to see all parameters)
    EDParams = cv.ximgproc_EdgeDrawing_Params()
    EDParams.MinPathLength = 50     # try changing this value between 5 to 1000
    EDParams.PFmode = False         # default value try to switch it to True
    EDParams.MinLineLength = 20     # try changing this value between 5 to 100
    EDParams.NFAValidation = True   # default value try to switch it to False
    ed.setParams(EDParams)
    
    # Detect edges
    # you should call this before detectLines() and detectEllipses()
    ed.detectEdges(gray)
    segments = ed.getSegments()
    lines = ed.detectLines()
    ellipses = ed.detectEllipses()
    
    # Draw detected edge segments
    for i in range(len(segments)):
        color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256))
        cv.polylines(ssrc, [segments[i]], False, color, 1, cv.LINE_8)
    cv.imshow("detected edge segments", ssrc)
    
    # Draw detected lines
    if lines is not None:  # Check if the lines have been found and only then iterate over these and add them to the image
        lines = np.uint16(np.around(lines))
        for i in range(len(lines)):
            cv.line(lsrc, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 1, cv.LINE_AA)
    cv.imshow("detected lines", lsrc)
    
    # Draw detected circles and ellipses
    if ellipses is not None:  # Check if circles and ellipses have been found and only then iterate over these and add them to the image
        for i in range(len(ellipses)):
            center = (int(ellipses[i][0][0]), int(ellipses[i][0][1]))
            axes = (int(ellipses[i][0][2])+int(ellipses[i][0][3]), int(ellipses[i][0][2])+int(ellipses[i][0][4]))
            angle = ellipses[i][0][5]
            color = (0, 0, 255)
            if ellipses[i][0][2] == 0:
                color = (0, 255, 0)
            cv.ellipse(esrc, center, axes, angle, 0, 360, color, 2, cv.LINE_AA)
    cv.imshow("detected circles and ellipses", esrc)
    
    cv.waitKey(0)
    print('Done')

if __name__ == '__main__':
    print(__doc__)
    main()
cv.destroyAllWindows()

执行指令:ed.py [<image_name>]

实例1: edge_drawing.py 1.png

实例2: edge_drawing.py 2.png

实例3: edge_drawing.py 3.png

说明:上述图中,绿色表示找到的椭圆,红色表示找到的圆。

当然,EdgeDrawing还可以获取边缘信息和查找直线,效果如下:

【2】C++中使用演示:

//公众号--OpenCV与AI深度学习
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/ximgproc/edge_drawing.hpp>

using namespace std;
using namespace cv;
using namespace ximgproc;

int main() {
    Mat src = imread("./imgs/11.bmp");
    if (src.empty()) {
        cout << "src image is empty, check again!" << endl;
        return -1;
    }
    // resize(src, src, Size(), 0.2, 0.2);
    imshow("src", src);
    Mat gray;
    cvtColor(src, gray, COLOR_BGR2GRAY);

    double start = static_cast<double>(getTickCount()); //计时开始
    Ptr<EdgeDrawing> ed = createEdgeDrawing();
    ed->params.EdgeDetectionOperator = EdgeDrawing::PREWITT;
    ed->params.MinPathLength = 50; // try changing this value between 5 to 1000
    ed->params.PFmode = false; // default value try to switch it to true
    ed->params.MinLineLength = 10; // try changing this value between 5 to 100
    ed->params.NFAValidation = false; // default value try to switch it to false
    ed->params.GradientThresholdValue = 20;

    ed->detectEdges(gray);
    vector<Vec4i> lines = ed->detectLines();
    vector<Vec7f> ellipses = ed->detectEllipses();

    Mat src_edges, src_lines, src_ellipses;
    src_edges = src.clone();
    src_lines = src.clone();
    src_ellipses = src.clone();

    for (size_t i = 0; i < lines.size(); i++) {
        line(src_lines, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(0, 255, 0), 2, LINE_AA);
    }

    for (size_t i = 0; i < ellipses.size(); i++) {
        Vec3f c = ellipses[i].clone();
        ellipse(src_ellipses, Point(c[0], c[1]), Size(c[2], c[3]), c[4], 0, 360, Scalar(0, 0, 255), 2, LINE_AA);
    }

    imshow("Detected Edges", src_edges);
    imshow("Detected Lines", src_lines);
    imshow("Detected Ellipses", src_ellipses);

    waitKey(0);
    return 0;
}

实例1: 

实例2: 

实例3:

简单总结

    总体来说EdgeDrawing提供的找圆和直线的方法简单易用且效果好,简单情况下使用默认参数即可。参数调整可以参考文档自己尝试,这里挑几个常用简单说明一下。

Ptr<EdgeDrawing> ed = createEdgeDrawing();
ed->params.EdgeDetectionOperator = EdgeDrawing::LSD;
ed->params.MinPathLength = 50; // try changing this value between 5 to 1000
ed->params.PFmode = false; //defaut value try to swich it to true
ed->params.MinLineLength = 10; // try changing this value between 5 to 100
ed->params.NFAValidation = true; // defaut value try to swich it to false
ed->params.GradientThresholdValue = 20;

【1】算法使用的梯度算子,可选4种,默认是PREWITT,大家可以设置不同的梯度算子尝试效果。

【2】梯度阈值GradientThresholdValue,值越小,更能找到对比度低的圆。比如下面分别是梯度阈值为100和50的效果:

【3】NFAValidation:默认值为true。指示是否将NFA(错误警报数)算法用于直线和椭圆验证。设置为false时,能找到更多圆或直线。

【4】MinPathLength:最小连接像素长度处理以创建边缘段。在梯度图像中,为创建边缘段而处理的最小连接像素长度。具有高于GradientThresholdValue的值的像素将被处理,默认值为10。比如下面分别是比如下面分别是梯度阈值为50和10的效果(值越小,更小的圆被找到):

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

猜你喜欢

转载自blog.csdn.net/csdn_xmj/article/details/143239107