YOLOv10改进策略【卷积层】| CVPR-2020 Strip Pooling 空间池化模块 处理不规则形状的对象 含二次创新

一、本文介绍

本文记录的是利用Strip Pooling模块优化YOLOv10的目标检测网络模型Strip Pooling结合了长而窄的卷积核形状在一个空间维度上的长程关系捕捉能力和在另一个空间维度上的局部细节捕捉能力,有效地处理复杂的场景信息。这一机制通过采用 1 × N 1×N 1×N N × 1 N×1 N×1的池化核形状来适应不同的图像特征,高模型对目标形状和分布的适应性。在场景解析网络中,Strip Pooling可以被用于提升对具有长程带状结构离散分布目标的解析能力,特别是在复杂场景或不同对象布局条件下效果更好。


专栏目录:YOLOv10改进

猜你喜欢

转载自blog.csdn.net/qq_42591591/article/details/143562992