YOLOv10改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息

一、本文介绍

本文记录的是利用轻量级自适应提取模块(LAE)模块优化YOLOv10的目标检测网络模型LAE (Lightweight Adaptive Extraction) 减少参数和计算成本的同时,能够提取更丰富语义信息的特征,克服了传统卷积方法难以捕捉全局信息的问题,并能更好地提取ROI特征。本文将其应用v10中,改进主要模块,更好地突出重要特征,从而提升模型对物体检测的能力。


专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

猜你喜欢

转载自blog.csdn.net/qq_42591591/article/details/143562009