Two and a half years of A/B experiment experience in Taoxi, let’s talk about my understanding of “scientific experiments”





In the two and a half years of A/B experiment experience on Taobao and Tmall, I have experienced the A/B experiment capability building of shelf e-commerce Taote and the A/B experiment capability building of content e-commerce live broadcast from zero to one . The former pays more attention to the construction of general experimental capabilities , while the latter pays more attention to the implementation of experimental science . At the moment when we are embracing change, it is lucky to focus on one field, so I will make a summary and talk about how to do "scientific experiments" as I understand it.



background

During the year of Taobao Live, I first spent a month on my own to reskin Kunlun Mirror (an experimental platform built on Taote) and put it online, including engineering architecture optimization, front-end optimization, resource deployment, experimental data warehouse modeling, Business caliber sorting, etc., nothing can prevent an enfp full-stack engineer from undertaking most of the business experiment needs and algorithm experiment needs of the live broadcast in the subsequent time. It is also because of the high overlap between my technical identity and business identity that I was able to In the following, combined with a large number of business cases, we will talk about how to do experimental science ~


Science of business goals: Growth goals should be long-term, healthy and quantifiable.


▐Case 1: "Skysaw Problem" - successive operational experiments  



  • case analysis


从实验结论可以看出,该实验显著提升人均GMV同时显著降低用户体验;这类对冲指标在业务中并不少见,例如提高人均成交笔数的同时不降低比单价、提高人均观看时长的同时不降低人均成交金额等等,如果不同的小团队恰好分配到了对冲指标(组织架构常见问题),则大团队需要合理制定目标同时,格外关注对冲指标。


  • Current solution

  1. A large team maintains core indicators and fence indicators, which usually require the determination of business leaders, finance, and BI.

  1. Normalize the trend of rendering core indicators and fence indicators, and observe the intuitive changes caused by the experimental push of all nodes;


  1. Combined with the long-term reverse bucket, the incremental value of the experiment is verified. (not shown in the picture)

  • Thinking: How should business OKR indicators be determined from the perspective of experimental management?

Usually when the business formulates OKR, the goal is to improve the overall indicator, such as GMV + 10%. Therefore, experimental reports such as GMV + 3% often closely follow the target. However, after the experiment is rolled out, it may be due to The month-on-month decline in UV led to a decline in GMV, creating the illusion that "the experimental reports are good, but the market is not rising." There are usually two ideas for this type of problem:
  1. OKR is set as an indicator that can be experimentally proven (such as GMV per capita), and this indicator is used to quantitatively evaluate the value of experiments;
  2. Strict reverse bucket management and control process, and estimate GMV contribution through reverse bucket;

experimental design science

In conventional experiments, due to the large scale of users, it is often assumed that the randomly selected sample groups are homogeneous . At the same time, the user network of shelf e-commerce is relatively simple (except for sharing experiments), and the independence between samples is not considered . However, experiments with small sample sizes often face homogeneity problems , and behavioral spillovers from experimental units also face independence problems between samples.

Simplified experimental flow chart


▐Case 2: "Homogeneity problem", small sample size experiment is difficult to conduct: new anchor experiment  


  • case analysis


Business hypothesis: We usually do a lot of strategic experiments to improve the experience of new anchors on Taobao. Taking a certain strategy as an example, we assume that this strategy can effectively improve the enthusiasm of new anchors.


Actual situation: The number of samples of new anchors that can be tested after business screening is small, and the individual differences between anchors are huge. Therefore, the indicators between the two randomly selected sample groups fluctuate greatly, making it impossible to carry out experiments.


  • Current solution ideas


  1. Variance reduction: around the indicators to be verified in the experiment, eliminate an appropriate amount of outliers (note: removing too much will lead to a smaller experimental effect, and removing too little will lead to excessive fluctuations. Empirically, at least keep it to the 99th percentile). If the variance is still too high It is large and can be appropriately processed into a long-term indicator . In this case, the difference in the anchor's single-day transaction amount is too large, so we took the three-day average transaction amount. However, this will cause the experimental data recovery cycle to become longer and the experimental interpretability may become worse . Therefore, it is necessary to clarify the purpose of the experiment before caliber processing.
  2. Indicator & dimension balancing : Through offline processing, multiple groups of samples with equal indicator data distribution and equal dimension distribution are obtained.
    1. If the sample size is not very small and the differences within the groups are not too obvious , you can try simple group balancing , that is, the same proportion of anchors from each group will participate in the experiment.
    2. If the sample size is too small, or the differences within the group are large , the model can be used to balance indicators and dimensions. In this case, the covariate adaptive randomization method is used , which can stably pass the AA test.
  1. AA test: ensure that the grouping results are homogeneous and that the experimental conclusions are usable. This section will be discussed in detail below.


  • think


Small sample size experiments are often easily ignored due to their small impact on the broader market and difficulty in implementation. However, under refined operations, such experiments have gradually begun to be taken seriously. We also need to pay attention to the "small" of the small sample size. In a real product price reduction case, 500 products were randomly sampled 1,000 times, and it was found that the mean set did not conform to the normal distribution. After adjusting to randomly sampling 10,000 products, The mean begins to show an obvious normal distribution, so the number of samples that can be sampled in the experiment in this context must not be less than 10,000.


▐Case 3 & 4: "Independence Issue", the overflow of user behavior caused by the community relationship between fans, and the overflow of anchor behavior caused by the traffic competition relationship between anchors. How to conduct these experiments?  


  • case analysis

Business Hypothesis 1: We hope to explore the transaction increment brought by different expressions of equity. Users in group AB in the experiment see different expressions of equity;
Actual situation : After users in group B see the rights and interests, they share them with users in group A. Users in group A come in and see different rights expressions, causing inconsistent user experience .
Business hypothesis 2: We hope to use the traffic control strategy to tilt traffic to anchors who meet certain rules, so as to experience the transaction amount.
Actual situation: Anchors in the experimental group who meet the rules do get more traffic, but on the premise that the total traffic pool remains unchanged, the new traffic of the anchors in the experimental group leads to a decrease in the traffic of anchors in other groups, resulting in behavioral overflow of the experimental group, resulting in The assumption of independence of experiments does not hold.

  • Current solution

By dividing time into multiple time slices and using each time slice as an independent experimental unit, we can ensure that all users in the same time slice will experience the same strategy. This design effectively avoids the problem of inconsistency in user experience. Similarly, in each time slice, all traffic will be uniformly assigned to a policy. This arrangement fundamentally prevents traffic competition and inconsistency in user experience, ensuring the fairness and effectiveness of the experiment. Time-slice rotation experiments allow us to provide a unified experience for all users at any given moment, maintaining consistency and avoiding potential disruptions during the experiment.



shortcoming:

  1. 由于其实验单元为时间,所以可统计样本量较少,导致实验效果评估周期长,同时日期切片容易受热点事件影响,导致实验结论偏差。

  2. 由于需保证实验单元的独立性,且日期天然存在延续性,因此要减少日期之间的影响,例如1号的策略会影响到2号凌晨的主播(因为主播的场次容易跨天),所以日期切割需要结合业务特点,灵活选择时间切片大小和切割点。


实验数据可用


  案例五:「AA检验不通过」在一次下单返红包的实验中,在分析实验数据时才发现用户分布不均匀,导致实验结论严重错误,甚至得出相反结论,浪费实验期间投入的预算等资源。


  • 案例分析

这个案例中,实验假设没有问题,问题出在分流结果严重不同质,导致的实验数据不可用,充分实验AA检验的意义:不仅 保证实验数据可用 ,更重要的是 避免因果关系误判,沉淀错误业务认知,误导业务发展方向。

  • 当前解法

采用AA日志回溯检验,提前验证数据可用:实验平台根据进桶用户的过去7天数据,判断两组用户是否同质。结合案例,采用日志回溯可在分流数据出来后,通过回溯其过去7天数据,发现两组用户实际不同质,实验应立刻停止;
建议给实验分级管控,高成本实验必须空跑一天及以上,通过AA检验结果后再上策略。这并不影响实验啥上线效率,业务放提前一天以上创建好实验即可。 新用户类的实验不适用于日志回溯。

AA日志回溯检验和AA空桶检验同属于AA检,AA检验主要包括三个方面:

1、分布均匀性检验

在这次案例中,实验组和对照组在购买力分层上严重不均,从而导致其核心指标也显著不均,无法获得实验效果。注意:

注意:分布不均匀并不一定表示实验数据不可用,本次案例是由于分布不均匀引起了核心指标不同质,导致了实验效果无法验证;


2、方差齐性检验 & 统计检验

在这次案例中,购买力的分布不均已经引起了指标不同质。从下图可以直观理解不同质现象,假设实验组和对照组本身同质,那么他们的数据分布应该都在绿色区域中,随后因为实验组施加了不同策略,导致实验组数据分布从绿色区域移动到了黄色区域。如果实验组未上策略就已经移动到了黄色区域,那么我们是无法证明策略对实验的影响。

本案例中,实验组通过日志回缩检验发现自身已经处于黄色区域,这是典型的不同质实验。

图为检验结果


数据分布形状主要由均值、方差影响,因此我们只需验证均值、方差是否一致,即可证明分组是否同质。
  1. 统计检验:通过双样本T检验或者多样本ANOVA检验,比较两个独立样本或配对样本的均值差异,具体检验方法可以根据实验样本量大小、样本均衡性情况、样本组数量决定。
  2. 方差齐性检验:通过Levene's Test或Bartlett's Test来验证实验组和对照组的数据方差是否一致。如果p值大于常用的显著性水平(如0.05),则可以认为组间方差是同质的。

  案例六:「异常值问题』在一次打赏实验中,发现实验效果波动较大,排查后发现榜一大哥竟能左右实验效果


  • 案例分析


在这个案例中,由于实验的用户一致性,榜一大哥会持续进入同一个实验组,于是大哥上线的天数该实验组效果就很好,大哥不在的天数则表现平平。这种实验如果没有找到这个异常值,按照常规经验难以进行分析和迭代。


  • 当前解法


方差缩减:因为异常值会影响到指标的均值、方差,因此异常值除了引起汇总结果的波动外,实验的AA检验、AB检验也都会受影响。目前根据参与实验的实际样本量,采用常用手段:四分位数间距法、标准差法、Z-Score、孤立森林等方式做动态处理。


  • 思考

A/B实验是验证因果关系的黄金标准。错误的因,只会带来错误的果。做好数据可用性验证,保证因果关系的正确发现,是沉淀实验经验,建立实验文化的必要基础。


实验分析科学


在获得可用的数据基础后,我们开始关注实验分析的问题,图示为一个简化的实验分析流程。


确定需要观察的指标&维度:

在上述案例中,可以发现漏看关键指标、关键维度都可能影响实验结论产出,且实际过程中实验往往需要下钻到关键维度,根据维度项里对实验的差异反应,寻找迭代方向。


  案例七:「实验正确看数」在提单价的实验中,我们发现实验的GMV提升明显,但是观看时长显著降低


  • 案例分析


由于提高了价格带,导致部分低购用户直接选择不看了,而这部分用户本身对GMV的贡献也不大,所以实验依然能够取得明显效果,然而低购群体里的较低年龄段用户他们贡献了较多的观看时长,因此该实验的观看时长也被显著降低。

因此得出一个业务经验:提单价的实验应避免波及(低GMV贡献但高观看时长贡献)的用户。


  • 当前解法

针对不同业务背景,提前确定看数范围(指标+维度),避免经验不足引起的实验观察错误,通常这块由业务方+数据同学共同制定。


判断低响应实验


  案例八:「低响应实验」活动入口做的AB实验,响应度太低无法分析实验数据。



  • 案例分析

由于活动入口只开放在实验组,且实验组中参与活动的用户只有10%不到,因此我们需要评估的实验效果是对这10%用户造成的增量效果。

然而实际分析中,由于仅10%的用户参与,除了样本量过少难以评估实验结果外,更重要的是:经过一层行为过滤后(发生主动点击行为)的残存用户是否在心智上和普遍用户已经不同质了,如果不同质,则实验结果不可用。

  • 当前解法

和小样本量实验相似,核心是获得两组可比较的样本量;与小样本量实验不同的是,低响应实验有明确的标杆人群用于对齐,因此这里通常采用分层匹配或倾向性得分等方式来获得可比较的两组样本,进行最终的实验效果分析。


  定量分析


这块在第一篇文章中已经浓重介绍过,这里不再赘述。简单提及要点:没有置信度支撑的数据叫随机波动,不要当作实验结论



思考:
实验分析是实验的最终结果,其需要相关的业务背景和专业知识,才能获得一份高价值的实验分析报告,而实验报告对组织来说就是图书馆里的书籍,一份份书籍在组织里被丰富、被传承,组成了组织的实验文化。
基于此,我们可以微调一个大模型用于实验分析,它将负责结合历史经验、当前业务背景、当前实验数据给出一个超过人工的实验报告,同时通过和它交流获取业务知识,辅助判断实验假设可行性。

相关资料

实验推全最终会回应到业务目标达成,我在这块的推动经验较为薄弱,如何围绕业务目标建立可量化的推全标准,这需要多方的信任基础和强大的组织推力,以后补充。

感谢领导信任,让我有机会在直播业务中完善我对A/B实验的理解;感谢大佬的大力支持,感谢所有合作的产品老师、运营老师、算法老师、工程老师、数据研发老师、数据科学老师的大力支持。


团队介绍


技术线内容技术团队,是承接淘天内容电商最核心的技术力量,团队拥有非常全面的内容技术领域布局,不仅覆盖音视频编解码、流媒体传输、低延时直播等多媒体技术,也包含计算机视觉、自然语言处理、多模态內容理解、AIGC等人工智能领域。
在内容技术领域之外,团队拥有强大的算法、前端、客户端、服务端、测试开发、数据开发、数据科学团队、负责面向亿级消费者提供服务的淘宝直播、淘宝逛逛、点淘等核心业务场域;
面向千万级商家、品牌、机构、达人的内容创作工具、内容运营平台内容商业化解决方案;以及面向淘天集团电商板块各业务线的内容管理、内容总线等基石平台。
简历投递邮箱:[email protected]




本文分享自微信公众号 - 大淘宝技术(AlibabaMTT)。
如有侵权,请联系 [email protected] 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

90后程序员开发视频搬运软件、不到一年获利超 700 万,结局很刑! 高中生自创开源编程语言作为成人礼——网友锐评:依托答辩 RustDesk 由于诈骗猖獗,暂停国内服务 淘宝 (taobao.com) 重启网页版优化工作 Java 17 是最常用的 Java LTS 版本 Windows 10 市场份额达 70%,Windows 11 持续下滑 开源日报 | 谷歌扶持鸿蒙上位;开源Rabbit R1;Docker加持的安卓手机;微软的焦虑和野心;海尔电器把开放平台关了 Apple 发布 M4 芯片 谷歌删除 Android 通用内核 (ACK) 对 RISC-V 架构的支持 云风从阿里离职,未来计划制作 Windows 平台的独立游戏
{{o.name}}
{{m.name}}

Guess you like

Origin my.oschina.net/u/4662964/blog/11104133