使用RT-Thread 系统实现DIY数字仪表(二)——把TouchGFX移植到RTThread系统

目录:

1.使用RT-Thread 系统实现DIY数字仪表(一)——STM32CUBMX5.6移植touchGFX4.13
2.使用RT-Thread 系统实现DIY数字仪表(二)——把TouchGFX移植到RTThread系统
3.使用RT-Thread 系统实现DIY数字仪表(三)——RTThread系统实现物联网平台
4.使用RT-Thread 系统实现DIY数字仪表(四)——完善TouchGFX仪表界面
5.使用RT-Thread 系统实现DIY数字仪表(五)——开发微信小程序

实验平台:

硬件: 野火挑战者STM32F767 V1开发版
软件: TouchGFXDesigner v4.13和 STM32CubeMX v5.6.0,MDK v5.29,RT-Thread env 工具

实验前准备工作:

1.准备一套 野火挑战者STM32F767 开发版或其他核心板
2.安装 TouchGFXDesigner v4.13
3.安装STM32CubeMX v5.6.0和X_CUBE_TOUCHGFX软件包
4.安装 MDK v5.27以上版本
5.下载 RTThread源码包https://gitee.com/rtthread/rt-thread

下载:

代码持续更新中:github代码下载地址https://gitee.com/Aladdin-Wang/hellotouchGFX.git

联系作者:

加微信备注touchgfx,拉入touchgfx-rtthread技术交流群共同学习
在这里插入图片描述

移植RT-Thread的BSP模板:

1.学习RT-Thread系统(学过的可以跳过此步骤)

2.移植BSP

  • 参考官方使用 Env 创建 RT-Thread 项目工程的教程
    • 选择 BSP
      获取 RT-Thread 源代码后需要根据自己手上的开发板型号找到对应的 BSP,我实验所使用的是野火的STM32F767 V1开发板,所以可以选择别人已经做好的stm32f767-fire-challenger的DSP,在此DSP的基础上移植touchgfx,首先找到如下目录:…\rt-thread-v4.0.2\rt-thread\bsp\stm32\stm32f767-fire-challenger。
    • 搭建项目框架
      打开 Env 工具进入 stm32f767-fire-challenger 目录,运行scons --dist 命令。使用此命令会在 stm32f767-fire-challenger 目录下生成 dist 目录,这便是开发项目的目录结构,RT-Thread 源码位于项目文件夹内,仅包含stm32f767-fire-challenger 的 BSP,可以随意拷贝此 BSP 到任何目录下使用。
      在这里插入图片描述
      进入dist目录下,把工程里面的 stm32f767-fire-challenger压缩包拷贝到你的项目目录下待使用。
    • 制作BSP
      也可以自己重新制作对应自己板子的DSP,可以参考官方教程

3.替换工程里CubeMX_Config文件夹

把RT-Thread 系统实现DIY数字仪表(一)工程的以下文件拷贝到BSP模版CubeMX_Config文件夹中,替换掉原先的文件,打开demo1重新生成工程。
在这里插入图片描述

4.更改操作系统的接口文件

拷贝OSWrappers.cpp,重命名为OSWrappers_RTT.cpp文件
在这里插入图片描述
更改代码

/**
  ******************************************************************************
  * File Name          : OSWrappers.cpp
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
#include <touchgfx/hal/OSWrappers.hpp>
#include <stm32f7xx_hal.h>
#include <touchgfx/hal/GPIO.hpp>
#include <touchgfx/hal/HAL.hpp>
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

static rt_sem_t frame_buffer_sem;
static rt_mq_t vsync_q = 0;
using namespace touchgfx;

// Just a dummy value to insert in the VSYNC queue.
static uint8_t dummy = 0x5a;

/*
 * Initialize frame buffer semaphore and queue/mutex for VSYNC signal.
 */
void OSWrappers::initialize()
{

	  frame_buffer_sem = rt_sem_create("gfx_sem", 1, RT_IPC_FLAG_PRIO);
    // Create a queue of length 1
    vsync_q = rt_mq_create("gfx_mq", 1, 1, RT_IPC_FLAG_PRIO);

}

/*
 * Take the frame buffer semaphore. Blocks until semaphore is available.
 */
void OSWrappers::takeFrameBufferSemaphore()
{
     rt_sem_take(frame_buffer_sem, RT_WAITING_FOREVER);
}

/*
 * Release the frame buffer semaphore.
 */
void OSWrappers::giveFrameBufferSemaphore()
{
    rt_sem_release(frame_buffer_sem);
}

/*
 * Attempt to obtain the frame buffer semaphore. If semaphore is not available, do
 * nothing.
 *
 * Note must return immediately! This function does not care who has the taken the semaphore,
 * it only serves to make sure that the semaphore is taken by someone.
 */
void OSWrappers::tryTakeFrameBufferSemaphore()
{
    rt_sem_trytake(frame_buffer_sem);
}

/*
 * Release the frame buffer semaphore in a way that is safe in interrupt context. Called
 * from ISR.
 *
 * Release the frame buffer semaphore in a way that is safe in interrupt context.
 * Called from ISR.
 */
void OSWrappers::giveFrameBufferSemaphoreFromISR()
{
    // Since this is called from an interrupt, FreeRTOS requires special handling to trigger a
    // re-scheduling. May be applicable for other OSes as well.
		rt_sem_release(frame_buffer_sem);
}

/*
 * Signal that a VSYNC has occurred. Should make the vsync queue/mutex available.
 *
 * Note This function is called from an ISR, and should (depending on OS) trigger a
 * scheduling.
 */
void OSWrappers::signalVSync()
{
    if (vsync_q)
    {
        rt_mq_send(vsync_q, &dummy, 1);
    }
}

/*
 * This function blocks until a VSYNC occurs.
 *
 * Note This function must first clear the mutex/queue and then wait for the next one to
 * occur.
 */
void OSWrappers::waitForVSync()
{
    // First make sure the queue is empty, by trying to remove an element with 0 timeout.
    rt_mq_recv(vsync_q, &dummy, 1, 0);

    // Then, wait for next VSYNC to occur.
    rt_mq_recv(vsync_q, &dummy, 1, RT_WAITING_FOREVER);
}

/*
 * A function that causes executing task to sleep for a number of milliseconds.
 *
 * A function that causes executing task to sleep for a number of milliseconds.
 * This function is OPTIONAL. It is only used by the TouchGFX in the case of
 * a specific frame refresh strategy (REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL).
 * Due to backwards compatibility, in order for this function to be useable by the HAL
 * the function must be explicitly registered:
 * hal.registerTaskDelayFunction(&OSWrappers::taskDelay)
 *
 * see HAL::setFrameRefreshStrategy(FrameRefreshStrategy s)
 * see HAL::registerTaskDelayFunction(void (*delayF)(uint16_t))
 */
void OSWrappers::taskDelay(uint16_t ms)
{
     rt_thread_mdelay(ms);
}
static rt_base_t IdleTaskHook(void* p)
{
    if ((int)p) //idle task sched out
    {
        touchgfx::HAL::getInstance()->setMCUActive(true);
    }
    else //idle task sched in
    {
        touchgfx::HAL::getInstance()->setMCUActive(false);
    }
    return RT_TRUE;
}

// FreeRTOS specific handlers
extern "C"
{
    void vApplicationStackOverflowHook(rt_thread_t xTask,
                                       signed char* pcTaskName)
    {
        while (1);
    }

    void vApplicationMallocFailedHook(rt_thread_t xTask,
                                      signed char* pcTaskName)
    {
        while (1);
    }

    void vApplicationIdleHook(void)
    {
        // Set task tag in order to have the "IdleTaskHook" function called when the idle task is
        // switched in/out. Used solely for measuring MCU load, and can be removed if MCU load
        // readout is not needed.
        //vTaskSetApplicationTaskTag(NULL, IdleTaskHook);
    }
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

5.新建touchgfx的应用例程文件

在这里插入图片描述
添加代码如下:

#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#include "app_touchgfx.h"

CRC_HandleTypeDef hcrc;

DMA2D_HandleTypeDef hdma2d;

LTDC_HandleTypeDef hltdc;

static void MX_CRC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_LTDC_Init(void);

#define DISP_Pin    GET_PIN(D, 4)
#define CTDL_BL_Pin GET_PIN(D, 7)
#define WIFI_Pin    GET_PIN(G, 9)

/**
  * @brief This function handles LTDC global interrupt.
  */
void LTDC_IRQHandler(void)
{
  /* USER CODE BEGIN LTDC_IRQn 0 */

  /* USER CODE END LTDC_IRQn 0 */
  HAL_LTDC_IRQHandler(&hltdc);
  /* USER CODE BEGIN LTDC_IRQn 1 */

  /* USER CODE END LTDC_IRQn 1 */
}

/**
  * @brief This function handles DMA2D global interrupt.
  */
void DMA2D_IRQHandler(void)
{
  /* USER CODE BEGIN DMA2D_IRQn 0 */

  /* USER CODE END DMA2D_IRQn 0 */
  HAL_DMA2D_IRQHandler(&hdma2d);
  /* USER CODE BEGIN DMA2D_IRQn 1 */

  /* USER CODE END DMA2D_IRQn 1 */
}
/**
  * @brief CRC Initialization Function
  * @param None
  * @retval None
  */
static void MX_CRC_Init(void)
{

  /* USER CODE BEGIN CRC_Init 0 */

  /* USER CODE END CRC_Init 0 */

  /* USER CODE BEGIN CRC_Init 1 */

  /* USER CODE END CRC_Init 1 */
  hcrc.Instance = CRC;
  hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
  hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
  hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  if (HAL_CRC_Init(&hcrc) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CRC_Init 2 */

  /* USER CODE END CRC_Init 2 */

}

/**
  * @brief DMA2D Initialization Function
  * @param None
  * @retval None
  */
static void MX_DMA2D_Init(void)
{

  /* USER CODE BEGIN DMA2D_Init 0 */

  /* USER CODE END DMA2D_Init 0 */

  /* USER CODE BEGIN DMA2D_Init 1 */

  /* USER CODE END DMA2D_Init 1 */
  hdma2d.Instance = DMA2D;
  hdma2d.Init.Mode = DMA2D_M2M;
  hdma2d.Init.ColorMode = DMA2D_OUTPUT_RGB565;
  hdma2d.Init.OutputOffset = 0;
  hdma2d.LayerCfg[1].InputOffset = 0;
  hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_RGB565;
  hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
  hdma2d.LayerCfg[1].InputAlpha = 0;
  hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA;
  hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR;
  if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN DMA2D_Init 2 */

  /* USER CODE END DMA2D_Init 2 */

}
/**
  * @brief LTDC Initialization Function
  * @param None
  * @retval None
  */
static void MX_LTDC_Init(void)
{

  /* USER CODE BEGIN LTDC_Init 0 */

  /* USER CODE END LTDC_Init 0 */

  LTDC_LayerCfgTypeDef pLayerCfg = {0};

  /* USER CODE BEGIN LTDC_Init 1 */

  /* USER CODE END LTDC_Init 1 */
  hltdc.Instance = LTDC;
  hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
  hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
  hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
  hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
  hltdc.Init.HorizontalSync = 0;
  hltdc.Init.VerticalSync = 0;
  hltdc.Init.AccumulatedHBP = 46;
  hltdc.Init.AccumulatedVBP = 23;
  hltdc.Init.AccumulatedActiveW = 846;
  hltdc.Init.AccumulatedActiveH = 503;
  hltdc.Init.TotalWidth = 866;
  hltdc.Init.TotalHeigh = 525;
  hltdc.Init.Backcolor.Blue = 0;
  hltdc.Init.Backcolor.Green = 0;
  hltdc.Init.Backcolor.Red = 0;
  if (HAL_LTDC_Init(&hltdc) != HAL_OK)
  {
    Error_Handler();
  }
  pLayerCfg.WindowX0 = 0;
  pLayerCfg.WindowX1 = 800;
  pLayerCfg.WindowY0 = 0;
  pLayerCfg.WindowY1 = 480;
  pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
  pLayerCfg.Alpha = 255;
  pLayerCfg.Alpha0 = 0;
  pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
  pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
  pLayerCfg.FBStartAdress = 0;
  pLayerCfg.ImageWidth = 800;
  pLayerCfg.ImageHeight = 480;
  pLayerCfg.Backcolor.Blue = 0;
  pLayerCfg.Backcolor.Green = 0;
  pLayerCfg.Backcolor.Red = 0;
  if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN LTDC_Init 2 */
    rt_pin_mode(DISP_Pin, PIN_MODE_OUTPUT);
    rt_pin_mode(CTDL_BL_Pin, PIN_MODE_OUTPUT);
    rt_pin_mode(WIFI_Pin, PIN_MODE_OUTPUT);
    rt_pin_write(DISP_Pin, 1);
    rt_pin_write(CTDL_BL_Pin, 1);
    rt_pin_write(WIFI_Pin, 0);
  /* USER CODE END LTDC_Init 2 */

}
void touchgfx_thread_entry(void *parameter)
{
    MX_CRC_Init();
    MX_DMA2D_Init();
    MX_LTDC_Init();
	MX_TouchGFX_Init();
	MX_TouchGFX_Process();
	for(;;)
	{
		rt_thread_mdelay(100);
	}
}
int TouchGFXTask(void)
{
	rt_thread_t tid = NULL;
	tid = rt_thread_create("TouchGFX",
							touchgfx_thread_entry, RT_NULL,
							4096, 20, 20);
	
   if (tid != RT_NULL)
        rt_thread_startup(tid);
   else
        return -1;

    return RT_EOK;
}
INIT_APP_EXPORT(TouchGFXTask);

6.移植触摸驱动及qspi flash地址映射驱动文件

从上一个工程拷贝或新建以下文件到ports文件夹
在这里插入图片描述
qspi驱动代码如下:

/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2018-11-27     zylx         first version
 */
 
#include <board.h>
#include <drv_qspi.h>
#include <rtdevice.h>
#include <rthw.h>
#include <finsh.h>
#ifdef BSP_USING_QSPI_MemoryMapped
#include "qspi_memorymapped.h"

static QSPI_HandleTypeDef hqspi;
//HAL库中发送指令的函数为HAL_QSPI_Command,为了方便使用,对该函数进行如下封装
static void QSPI_SendCmd(uint32_t cmd,uint32_t cmdMode,uint32_t addr,uint32_t addrMode,uint32_t addrSize,uint32_t dataMode)
{
    QSPI_CommandTypeDef s_command = {0};
    
    s_command.Instruction     = cmd;          //指令
    s_command.InstructionMode = cmdMode;	  //指令模式
    s_command.Address         = addr;         //地址
    s_command.AddressMode     = addrMode;     //地址模式
    s_command.AddressSize     = addrSize;     //地址长度
    s_command.DataMode        = dataMode;     //数据模式
    
    if (HAL_QSPI_Command(&hqspi, &s_command, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
    {
        Error_Handler();
    }
}

//QSPI发送与接收的HAL库函数为QSPI_Transmit与HAL_QSPI_Receive,为方便使用,对着两个函数进行如下封装
static void QSPI_Receive(uint8_t* buf,uint32_t len)
{
    hqspi.Instance->DLR = len - 1;                 //配置数据长度
    if(HAL_QSPI_Receive(&hqspi, buf, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
    {
        Error_Handler();
    }
}
 
static uint8_t QSPI_Transmit(uint8_t* buf,uint32_t len)
{
    hqspi.Instance->DLR = len - 1;                            //配置数据长度
    if(HAL_QSPI_Transmit(&hqspi, buf, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK)
    {
        Error_Handler();
    }
		return 0;
}

//在初始化流程中需要设置QE为1,编写如下函数
static void W25QXX_SetQE(void)
{
    uint8_t value = 0x02;
    /* 1.写使能 */
    QSPI_SendCmd(W25X_WriteEnable,QSPI_INSTRUCTION_1_LINE,0,0,0,0);
    /* 2.发送写状态寄存器2命令 */
    QSPI_SendCmd(W25X_WriteStatusReg2,QSPI_INSTRUCTION_1_LINE,0,0,0,QSPI_DATA_1_LINE);
    /* 3.发送数据 */
    QSPI_Transmit(&value, 1);
}

//在初始化流程中需要设置读参数,编写如下函数,该函数设置Bit4与Bit5为1,使得读取时最大速率可达104MHz
static void W25QXX_SetReadParam(void)
{
	uint8_t para = 3 << 4;
	
	/* 1.发送命令 */
	QSPI_SendCmd(W25X_SetReadParam,QSPI_INSTRUCTION_4_LINES,0,0,0,QSPI_DATA_4_LINES);
	/* 2.发送数据 */
	QSPI_Transmit(&para, 1);
}

//最后添加一个读取ID的函数,通过该函数可检测是否初始化成功。根据手册可知,W25Q256的ID为0xEF18
static uint16_t W25QXX_ReadId(void)
{
    
    uint8_t pData[2];
 
    QSPI_SendCmd(W25X_ManufactDeviceID,QSPI_INSTRUCTION_4_LINES,
                 0,QSPI_ADDRESS_4_LINES,QSPI_ADDRESS_24_BITS,QSPI_DATA_4_LINES);
    QSPI_Receive(pData,2);
 
    return pData[1] | ( pData[0] << 8 );
}
//编写好初始化W25Q256程序后,调用一个进入内存映射模式的函数,该函数如下:
/**
* @brief Configure the QSPI in memory-mapped mode
* @param None 
* @retval QSPI memory status
*/
static void W25QXX_MemoryMappedMode(uint32_t ADDRESS_BITS)
{
  QSPI_CommandTypeDef s_command;
  QSPI_MemoryMappedTypeDef s_mem_mapped_cfg;
 
  /* Configure the command for the read instruction */
  s_command.InstructionMode = QSPI_INSTRUCTION_4_LINES;
  s_command.Instruction = W25X_FastReadData;
  s_command.AddressMode = QSPI_ADDRESS_4_LINES;
  s_command.AddressSize = ADDRESS_BITS;
  s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
  s_command.DataMode = QSPI_DATA_4_LINES;
  s_command.DummyCycles = 8;
  s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
  s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
  s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
  /* Configure the memory mapped mode */
  s_mem_mapped_cfg.TimeOutActivation = QSPI_TIMEOUT_COUNTER_DISABLE;
  s_mem_mapped_cfg.TimeOutPeriod = 0; //1;
 
  if (HAL_QSPI_MemoryMapped(&hqspi, &s_command, &s_mem_mapped_cfg) != HAL_OK)
  {
    Error_Handler();
  }
}
/**
  * @brief QUADSPI Initialization Function
  * @param None
  * @retval None
  */
static void MX_QUADSPI_Init(void)
{

  /* QUADSPI parameter configuration*/
  hqspi.Instance = QUADSPI;
  hqspi.Init.ClockPrescaler = 2;
  hqspi.Init.FifoThreshold = 4;
  hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
  hqspi.Init.FlashSize = 23;
  hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE;
  hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
  hqspi.Init.FlashID = QSPI_FLASH_ID_1;
  hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
  if (HAL_QSPI_Init(&hqspi) != HAL_OK)
  {
    Error_Handler();
  }

}
//根据流程编写如下初始化流程函数。
//0XEF13,表示芯片型号为W25Q80
//0XEF14,表示芯片型号为W25Q16
//0XEF15,表示芯片型号为W25Q32
//0XEF16,表示芯片型号为W25Q64
//0XEF17,表示芯片型号为W25Q128
//0XEF18,表示芯片型号为W25Q256
int W25QXX_Init(void)
{
	uint16_t W25QXX_ID;
	MX_QUADSPI_Init();
    W25QXX_SetQE();
	rt_thread_mdelay(30);
    W25QXX_ENTER_QSPI();
    W25QXX_SetReadParam();//设置读参数
    W25QXX_ID = W25QXX_ReadId();
	if(W25QXX_ID != 0XEF18)
	W25QXX_MemoryMappedMode(QSPI_ADDRESS_24_BITS);//进入内存映射模式
	else
	W25QXX_MemoryMappedMode(QSPI_ADDRESS_32_BITS);//进入内存映射模式	
	rt_kprintf("W25QXX enter MemoryMappedMode success! W25QXX_ID=%x\r\n",W25QXX_ID);
	return RT_EOK;
}
INIT_DEVICE_EXPORT(W25QXX_Init);
#endif/* BSP_USING_QSPI_FLASH */

触摸驱动gt9xx.c需要更改中断,使用rtthread的pin设备接口
在这里插入图片描述

7.编辑 board/KConfig

在这里插入图片描述
在这里插入图片描述

8.编辑 board/SConscript

在这里插入图片描述
在这里插入图片描述

9.新建 board/CubeMX_Config/SConscript

import os
import rtconfig
from building import *

cwd = GetCurrentDir()

# add general drivers
src = Split('''
Src/sample_touchgfx.c
Src/OSWrappers_RTT.cpp
Src/STM32DMA.cpp
Src/STM32TouchController.cpp
Src/TouchGFXGPIO.cpp
Src/TouchGFXConfiguration.cpp
Src/TouchGFXGeneratedHAL.cpp
Src/TouchGFXHAL.cpp
Src/app_touchgfx.c
''')

path =  [cwd + '/Src']
path += [cwd + '/Middlewares/ST/touchgfx/framework/include']


if rtconfig.CROSS_TOOL == 'gcc':
    src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/gcc/libtouchgfx.a']
elif rtconfig.CROSS_TOOL == 'keil':
    src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/Keil/touchgfx_core.lib']
elif rtconfig.CROSS_TOOL == 'iar':
    src += [cwd + '/Middlewares/ST/touchgfx/lib/core/cortex_m7/IAR8.x/touchgfx_core.a']

group = DefineGroup('TouchGFX_app', src, depend = [''], CPPPATH = path)

# add TouchGFX generated
genSrc = Glob('./Src/generated/fonts/src/*.cpp')
genSrc += Glob('./Src/generated/gui_generated/src/*/*.cpp')
genSrc += Glob('./Src/generated/images/src/*.cpp')
genSrc += Glob('./Src/generated/texts/src/*.cpp')

genPath = [cwd + '/Src/generated/fonts/include']
genPath += [cwd + '/Src/generated/gui_generated/include']
genPath += [cwd + '/Src/generated/images/include']
genPath += [cwd + '/Src/generated/texts/include']

group = group + DefineGroup('TouchGFX_generated', genSrc, depend = [''], CPPPATH = genPath)

# add TouchGFX resource
resSrc = Glob('./Src/generated/images/src/*/*.cpp')

group = group + DefineGroup('TouchGFX_resource', resSrc, depend = [''])

# add TouchGFX gui
guiSrc = Glob('./Src/gui/src/*/*.cpp')
guiPath = [cwd + '/Src/gui/include']

group = group + DefineGroup('TouchGFX_gui', guiSrc, depend = [''], CPPPATH = guiPath)

Return('group')

10.编辑libraries/STM32F7xx_HAL/SConscript

在这里插入图片描述

11.修改工程模版

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

12.配置 Menuconfig

在这里插入图片描述
在这里插入图片描述

13.生成工程

使用scons --target=mdk5 命令生成 MDK工程
在这里插入图片描述

14.更改sdram_port.h

SDRAM的前2M空间用于touchgfx,后边的空间给rtthread系统分配内存使用。
在这里插入图片描述

15.编译并下载运行

此工程地址
hellotouchGFX/ 3_STM32F767_RTThread_TouchGFX / 3_rtthread_TouchGFX_transplant / stm32f767-fire-challenger
在这里插入图片描述
在这里插入图片描述

16.还需改进的地方

16.1 rtthread的触摸驱动软件包待移植

使用的触摸的驱动还是上一版工程的代码,没有使用rtthread原汁原味的触摸驱动软件包

16.2 qspi flash 地址映射驱动待整合

qspi flash 地址映射的驱动使用的依然是上一版的代码,没有使用rtthread的源码包里提供的qspi驱动,这个也可以整合进去

16.3 待制作成RTThread的TouchGFX软件包

TouchGFX本身就是一个与硬件和操作系统无关的软件包,完全可以整合成RTThread的一个软件包来使用,此次移植的依然是通过cubmx生成的TouchGFX工程,没有制作成RTThread的通用软件包

参考文章:https://blog.csdn.net/baidu_33429980/article/details/104248352

发布了30 篇原创文章 · 获赞 33 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/sinat_31039061/article/details/105045469