BERT详解(3)---源码解读[预训练模型]

目录

2. 预训练模型

bert模型的预训练过程包含两个任务:

  • 下一句预测(Next Sentence Prediction)
  • 遮蔽词预测

主程序在run_pretraining.py中, 进入run_pretraining.py主函数main(_)中,首先看model_fn_builder函数, 该函数中主要有以下几部分:构建BERT模型、构建遮蔽词预测的损失函数、构建Next Sentence Prediction的损失函数

2.1 BERT模型构建

词嵌入

程序在modeling.py中的Bertmodel类中。BERT模型构建的第一步是词嵌入,将输入的索引转换成稠密向量。输入input_ids.shape = [batch_size, seq_length], 输出output.shape= [batch_size, seq_length, embedding_size]。

def embedding_lookup(input_ids,
                     vocab_size,
                     embedding_size=128,
                     initializer_range=0.02,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=False):  # embedding方式的选择,是用one_hot还是用gather方式
    """Looks up words embeddings for id tensor.

  Args:
    input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
      ids.
    vocab_size: int. Size of the embedding vocabulary.
    embedding_size: int. Width of the word embeddings.
    initializer_range: float. Embedding initialization range.
    word_embedding_name: string. Name of the embedding table.
    use_one_hot_embeddings: bool. If True, use one-hot method for word
      embeddings. If False, use `tf.gather()`.

  Returns:
    float Tensor of shape [batch_size, seq_length, embedding_size].
  """
    # This function assumes that the input is of shape [batch_size, seq_length,
    # num_inputs].
    #
    # If the input is a 2D tensor of shape [batch_size, seq_length], we
    # reshape to [batch_size, seq_length, 1].
    if input_ids.shape.ndims == 2:
        input_ids = tf.expand_dims(input_ids, axis=[-1])

    embedding_table = tf.get_variable(
        name=word_embedding_name,
        shape=[vocab_size, embedding_size],
        initializer=create_initializer(initializer_range))

    flat_input_ids = tf.reshape(input_ids, [-1])
    if use_one_hot_embeddings:
        one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
        output = tf.matmul(one_hot_input_ids, embedding_table)
    else:
        output = tf.gather(embedding_table, flat_input_ids)

    input_shape = get_shape_list(input_ids)

    output = tf.reshape(output,
                        input_shape[0:-1] + [input_shape[-1] * embedding_size])
    return (output, embedding_table)

上面的程序是对token进行embedding, 而在【BERT详解(1)】提到BERT中的embedding包括三层,即 token embedding,segment embedding,position embedding。下面的程序即后面两者的embedding。

def embedding_postprocessor(input_tensor,
                            use_token_type=False,
                            token_type_ids=None,
                            token_type_vocab_size=16,  # 在next sentence prediction任务里的Segment A和 Segment B
                            token_type_embedding_name="token_type_embeddings",
                            use_position_embeddings=True,
                            position_embedding_name="position_embeddings",
                            initializer_range=0.02,
                            max_position_embeddings=512,
                            dropout_prob=0.1):
 
    input_shape = get_shape_list(input_tensor, expected_rank=3)  # [batchsize, seq_length, embedding_size]
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    width = input_shape[2]
    output = input_tensor

    # 在next sentence prediction任务里的Segment A和 Segment B编码
    if use_token_type:
        if token_type_ids is None:
            raise ValueError("`token_type_ids` must be specified if"
                             "`use_token_type` is True.")
        token_type_table = tf.get_variable(
            name=token_type_embedding_name,
            shape=[token_type_vocab_size, width],
            initializer=create_initializer(initializer_range))
        # 因为token_type_vocab_size较小,在这里使用one-hot的方式,因为对于小词表这种方式更快
        flat_token_type_ids = tf.reshape(token_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
        token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
        token_type_embeddings = tf.reshape(token_type_embeddings,
                                           [batch_size, seq_length, width])
        output += token_type_embeddings
        
    # 位置编码
    if use_position_embeddings:
        assert_op = tf.assert_less_equal(seq_length,
                                         max_position_embeddings)  # 如果seq_length>max_position_embeddings抛出异常
        with tf.control_dependencies([assert_op]):
            full_position_embeddings = tf.get_variable(
                name=position_embedding_name,
                shape=[max_position_embeddings, width],
                initializer=create_initializer(initializer_range))
            # Since the position embedding table is a learned variable, we create it
            # using a (long) sequence length `max_position_embeddings`. The actual
            # sequence length might be shorter than this, for faster training of
            # tasks that do not have long sequences.
            # So `full_position_embeddings` is effectively an embedding table
            # for position [0, 1, 2, ..., max_position_embeddings-1], and the current sequence has positions [0, 1, 2, ... seq_length-1], so we can just perform a slice.
            position_embeddings = tf.slice(full_position_embeddings, [0, 0],
                                           [seq_length, -1])
            num_dims = len(output.shape.as_list())

            # Only the last two dimensions are relevant (`seq_length` and `width`), so we broadcast among the first dimensions, which is typically just the batch size.
            position_broadcast_shape = []
            for _ in range(num_dims - 2):
                position_broadcast_shape.append(1)
            position_broadcast_shape.extend([seq_length, width])
            position_embeddings = tf.reshape(position_embeddings,
                                             position_broadcast_shape)
            output += position_embeddings

    output = layer_norm_and_dropout(output, dropout_prob)
    return output

参数说明:

input_tensor:即token embedding的结果
use_token_type:是否要进行segment embedding
token_type_ids:  就是预处理时的segment_ids, 形如[0, 0, 0, 1, 1, 1, 1, 1], 用于next sentence prediction中sengment A和segment B
token_type_vocab_size: 不能太确定该参数,在此先不说,若有大神知道,请告知
use_position_embeddings: 是否要位置编码

上面程序先在token embedding基础上进行segment embedding和position embedding, 然后再进行LN和dropout

构建transformer网络

BERT中Transformer结构如下图
在这里插入图片描述
代码如下:

def transformer_model(input_tensor,
                      attention_mask=None,
                      hidden_size=768,  # 词向量维度
                      num_hidden_layers=12,  # transformer 层数
                      num_attention_heads=12,
                      intermediate_size=3072,  # 前馈网络的隐藏层神经元个数
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False):  # 是否返回所有层,还是只返回最后一层

    if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    # transformer网络在所有层上进行残差链接,所以需要输入的width和hidden_size相同
    if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                         (input_width, hidden_size))
    prev_output = reshape_to_matrix(input_tensor)  # [batch_size, seq_len*width]

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):  # transformer 有12个block组成
        with tf.variable_scope("layer_%d" % layer_idx):
            layer_input = prev_output

            with tf.variable_scope("attention"):
                attention_heads = []
                with tf.variable_scope("self"):
                    # attention 计算: Softmax(Qk'/Sqrt(dim))V
                    attention_head = attention_layer(
                                                from_tensor=layer_input,
                                                to_tensor=layer_input,
                                                attention_mask=attention_mask,
                                                num_attention_heads=num_attention_heads,
                                                size_per_head=attention_head_size,
                                                attention_probs_dropout_prob=attention_probs_dropout_prob,
                                                initializer_range=initializer_range,
                                                do_return_2d_tensor=True,
                                                batch_size=batch_size,
                                                from_seq_length=seq_length,
                                                to_seq_length=seq_length)
                    # attention_head.shape = (batch_size*seq_len, num_head*per_head_width)
                    attention_heads.append(attention_head)

                attention_output = None
                if len(attention_heads) == 1:
                    attention_output = attention_heads[0]
                else:
                    # In the case where we have other sequences, we just concatenate
                    # them to the self-attention head before the projection.
                    attention_output = tf.concat(attention_heads, axis=-1)

                # Run a linear projection of `hidden_size` then add a residual
                # with `layer_input`.
                with tf.variable_scope("output"):
                    attention_output = tf.layers.dense(
                        attention_output,
                        hidden_size,
                        kernel_initializer=create_initializer(initializer_range))
                    attention_output = dropout(attention_output, hidden_dropout_prob)
                    attention_output = layer_norm(attention_output + layer_input)

            # The activation is only applied to the "intermediate" hidden layer.
            with tf.variable_scope("intermediate"):
                intermediate_output = tf.layers.dense(
                    attention_output,
                    intermediate_size,
                    activation=intermediate_act_fn,
                    kernel_initializer=create_initializer(initializer_range))

            # Down-project back to `hidden_size` then add the residual.
            with tf.variable_scope("output"):
                layer_output = tf.layers.dense(
                    intermediate_output,
                    hidden_size,
                    kernel_initializer=create_initializer(initializer_range))
                layer_output = dropout(layer_output, hidden_dropout_prob)
                layer_output = layer_norm(layer_output + attention_output)
                prev_output = layer_output

                # 将每一层的输出都放入列表保存起来
                all_layer_outputs.append(layer_output)    # layer_output.shape = [bath_size*seq_len, hidden_size]
    #  返回所有encoder的输出
    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)    # [batch_size, seq_len, hidden_size]
        return final_outputs

    # 返回最后一层的输出
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output   # [batch_size, seq_len, hidden_size]

关于transformer原理部分请移步【transformer详解】,这里重点讲解其中的attention-mask的实现原理,代码如下:

    if attention_mask is not None:
        # `attention_mask` = [B, 1, F, T]= [batch_size, 1, seq_len, seq_len]
        attention_mask = tf.expand_dims(attention_mask, axis=[1])
        # 在attention_mask中原来值为1的位置,现在变为0,原来为0的位置,现在变为-10000
        adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
        # 加上adder后,不被关注的位置为一个很小的负数,被attention的位置,值几乎没变,经过 softmax 后很小的负数变为0
        attention_scores += adder

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

    # `value_layer` = [B, T, N, H]
    value_layer = tf.reshape(
        value_layer,
        [batch_size, to_seq_length, num_attention_heads, size_per_head])

    # `value_layer` = [B, N, T, H]
    value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

    # `context_layer` = [B, N, F, H]
    context_layer = tf.matmul(attention_probs, value_layer)

    # `context_layer` = [B, F, N, H]=[batch_size, seq_len, num_head, per_head_width]
    context_layer = tf.transpose(context_layer, [0, 2, 1, 3])

代码实现原理如下图:
在这里插入图片描述

2.2 构建遮蔽词预测的损失函数

对MASK的词的预测值计算损失使用了交叉熵损失函数,关于交叉熵损失函数详见【交叉熵】;主要过程是先从transformer模型中取出最后一层的输出中的对应被MASK的词向量,并将其与embedding table中每个词向量求点积获得和每个词的相似度,这个输出就是对mask的词的预测值;然后将输出与真实值求交叉熵损失,具体实现如下

def get_masked_lm_output(bert_config, input_tensor, output_weights, positions, label_ids, label_weights):
  """Get loss and log probs for the masked LM.
     用于计算maskLM的训练loss
     args:
     bert_config: bert配置文件
     input_tensor: transformer encoder最后一层的输出
     output_weights:embedding table
     positions: 句子中mask的词在当前这句话中的索引位置
     labels_ids: 句子中被mask的词在词表中的索引
     label_weights:mask_lm_weights 即mask的词的权重,一般都为1

  """
  # 从transformer最后一层的输出取出被mask的词的向量
  input_tensor = gather_indexes(input_tensor, positions)     # [len(position)*batchsize, width]

  with tf.variable_scope("cls/predictions"):
    # We apply one more non-linear transformation before the output layer.
    # This matrix is not used after pre-training.
    with tf.variable_scope("transform"):
      input_tensor = tf.layers.dense(
                              input_tensor,
                              units=bert_config.hidden_size,
                              activation=modeling.get_activation(bert_config.hidden_act),
                              kernel_initializer=modeling.create_initializer(bert_config.initializer_range))
      input_tensor = modeling.layer_norm(input_tensor)    # [len(position)*bs, hidden_size]
    #  上面部分是transformer encoder 的输出

    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    output_bias = tf.get_variable(
                            "output_bias",
                            shape=[bert_config.vocab_size],
                            initializer=tf.zeros_initializer())
    #  用transformer的输出值与embedding table中每个词向量求点积获得和每个词的相似度
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)    # output_weights: embedding_tabel;  shape=[len(position)*bs, vocab_size]
    logits = tf.nn.bias_add(logits, output_bias)
    # 预测的输出值进行softmax和log,用于后面求交叉熵
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    label_ids = tf.reshape(label_ids, [-1])
    label_weights = tf.reshape(label_weights, [-1])
    # 将标签用one hot 表示
    one_hot_labels = tf.one_hot(label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

    # The `positions` tensor might be zero-padded (if the sequence is too
    # short to have the maximum number of predictions). The `label_weights`
    # tensor has a value of 1.0 for every real prediction and 0.0 for the
    # padding predictions.
    # 参数position可能有pad 0(如果输入序列太短从而使得其没有达到最大预测输出的数量), label_weights指对每个真实的预测输出都是1, 对于pading的预测输出对应为0
    per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
    numerator = tf.reduce_sum(label_weights * per_example_loss)
    denominator = tf.reduce_sum(label_weights) + 1e-5
    # 平均损失
    loss = numerator / denominator

  return (loss, per_example_loss, log_probs)

2.3 构建Next Sentence Prediction的损失函数

取出每个句子首位的【CLS】组成一个矩阵向量,后面接上一个全连接层进行2分类,将预测值与next_sentence_labels中的真实标签计算交叉熵损失,具体实现如下

def get_next_sentence_output(bert_config, input_tensor, labels):
  """Get loss and log probs for the next sentence prediction."""
    # args: input_tensor:shape= [batchsize,hidden_units] transformer最后输出【CLS】对应的向量
    #       labels: next_sentence_label 真实标签
  # Simple binary classification. Note that 0 is "next sentence" and 1 is
  # "random sentence". This weight matrix is not used after pre-training.
  with tf.variable_scope("cls/seq_relationship"):
    #   全连接的权重
    output_weights = tf.get_variable(
                                "output_weights",
                                shape=[2, bert_config.hidden_size],
                                initializer=modeling.create_initializer(bert_config.initializer_range))
    output_bias = tf.get_variable(
                                "output_bias", shape=[2], initializer=tf.zeros_initializer())
    # 全连接预测
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)   # [batch_size, 2]
    logits = tf.nn.bias_add(logits, output_bias)
    # 计算交叉熵损失函数
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, per_example_loss, log_probs)

2.3 总结

本章讲解了BERT源码中的预训练模型过程,包括BERT模型的搭建过程、训练过程的损失函数等内容。BERT模型中最核心的就是transformer模型, BERT预训练的损失函数由两部分组成,即遮蔽词预测的损失函数和Next Sentence Prediction的损失函数,其两者之和就是总的损失函数。在下章我们将讲解BERT实战

发布了33 篇原创文章 · 获赞 1 · 访问量 2597

猜你喜欢

转载自blog.csdn.net/orangerfun/article/details/104589542