pytorch 把MNIST数据集转换成图片和txt

# library
# standard library
import os

# third-party library
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import torchvision
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001              # learning rate


root = "./mnist/raw/"

def default_loader(path):
    # return Image.open(path).convert('RGB')
    return Image.open(path)

class MyDataset(Dataset):
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
        fh = open(txt, 'r')
        imgs = []
        for line in fh:
            line = line.strip('\n')
            line = line.rstrip()
            words = line.split()
            imgs.append((words[0], int(words[1])))
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader
        fh.close()
    def __getitem__(self, index):
        fn, label = self.imgs[index]
        img = self.loader(fn)
        img = Image.fromarray(np.array(img), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        return img,label
    def __len__(self):
        return len(self.imgs)



train_data = MyDataset(txt= root + 'train.txt', transform = torchvision.transforms.ToTensor())
train_loader = DataLoader(dataset = train_data, batch_size=BATCH_SIZE, shuffle=True)

test_data = MyDataset(txt= root + 'test.txt', transform = torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset = test_data, batch_size=BATCH_SIZE)

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # input height
                out_channels=16,            # n_filters
                kernel_size=5,              # filter size
                stride=1,                   # filter movement/step
                padding=2,                  # if want same width and length of this image after con2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(2),                # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization


cnn = CNN()
print(cnn)  # net architecture

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted


# training and testing
for epoch in range(EPOCH):
    for step, (x, y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
        b_x = Variable(x)   # batch x
        b_y = Variable(y)   # batch y

        output = cnn(b_x)[0]               # cnn output
        loss = loss_func(output, b_y)   # cross entropy loss
        optimizer.zero_grad()           # clear gradients for this training step
        loss.backward()                 # backpropagation, compute gradients
        optimizer.step()                # apply gradients

        if step % 50 == 0:
            cnn.eval()
            eval_loss = 0.
            eval_acc = 0.
            for i, (tx, ty) in enumerate(test_loader):
                t_x = Variable(tx)
                t_y = Variable(ty)
                output = cnn(t_x)[0]
                loss = loss_func(output, t_y)
                eval_loss += loss.data[0]
                pred = torch.max(output, 1)[1]
                num_correct = (pred == t_y).sum()
                eval_acc += float(num_correct.data[0])
            acc_rate = eval_acc / float(len(test_data))
            print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(test_data)), acc_rate))


图片和label 见上一篇文章《pytorch 把MNIST数据集转换成图片和txt》

结果如下:

 

http://www.codeblogbt.com/archives/37407

 

猜你喜欢

转载自blog.csdn.net/fox64194167/article/details/80381671