C++ 进阶

文件和流、异常、内存、多线程、web编程 ----- 基础知识

C++ 进阶

一、C++ 文件和流

iostream 标准库,它提供了 cin 和 cout 方法分别用于从标准输入读取流和向标准输出写入流。
C++ 中另一个标准库 fstream,它定义了三个新的数据类型:

数据类型 描述
ofstream 该数据类型表示输出文件流,用于创建文件并向文件写入信息。
ifstream 该数据类型表示输入文件流,用于从文件读取信息。
fstream 该数据类型通常表示文件流,且同时具有 ofstream 和 ifstream 两种功能,这意味着它可以创建文件,向文件写入信息,从文件读取信息。

要在 C++ 中进行文件处理,必须在 C++ 源代码文件中包含头文件 和 。

打开文件

在从文件读取信息或者向文件写入信息之前,必须先打开文件。ofstream 和 fstream 对象都可以用来打开文件进行写操作,如果只需要打开文件进行读操作,则使用 ifstream 对象。
下面是 open() 函数的标准语法,open() 函数是 fstream、ifstream 和 ofstream 对象的一个成员。

void open(const char *filename, ios::openmode mode);

在这里,open() 成员函数的第一参数指定要打开的文件的名称和位置,第二个参数定义文件被打开的模式。

模式标志 描述
ios::app 追加模式。所有写入都追加到文件末尾。
ios::ate 文件打开后定位到文件末尾。
ios::in 打开文件用于读取。
ios::out 打开文件用于写入。
ios::trunc 如果该文件已经存在,其内容将在打开文件之前被截断,即把文件长度设为 0。

如果要以写入模式打开文件,并希望截断文件,以防文件已存在,那么可以使用下面的语法:

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc );

似地,如果想要打开一个文件用于读写,可以使用下面的语法:

fstream afile;

afile.open("file.dat", ios::out | ios::in );

关闭文件

当 C++ 程序终止时,它会自动关闭刷新所有流,释放所有分配的内存,并关闭所有打开的文件

下面是 close() 函数的标准语法,close() 函数是 fstream、ifstream 和 ofstream 对象的一个成员。
void close();

写入文件

在 C++ 编程中,使用流插入运算符( << )向文件写入信息,就像使用该运算符输出信息到屏幕上一样。唯一不同的是,在这里使用的是 ofstream 或 fstream 对象,而不是 cout 对象

读取文件

在 C++ 编程中,使用流提取运算符( >> )从文件读取信息,就像使用该运算符从键盘输入信息一样。唯一不同的是,在这里使用的是 ifstream 或 fstream 对象,而不是 cin 对象。

读取 & 写入实例

#include <fstream>
#include <iostream>

using namespace std;

int main(){
    char data[100];
    //写模式打开文件

    ofstream outfile;
    outfile.open("test.dat");

    cout << "写入文件--"<<endl;

    cout << "输入你的姓名:" <<endl;

    cin.getline(data,100);

    //文件写入

    outfile << data << endl;

    cout <<"输入年纪"<<endl;

    cin >>data;
    cin.ignore();

    //再次文件写入

    outfile <<data<<endl;

    //关闭

    outfile.close();

    //读模式打开文件

    ifstream infile;

    infile.open("test.dat");

    cout << "从文件读取内容" <<endl;

    infile >>data;

    //输出
    cout <<data <<endl;

    //再次读取,输出
    cout << "再次读取文件读取内容" <<endl;
    infile>>data;

    cout <<data <<endl;

    //关闭

    infile.close();

    return  0;


}

结果:

写入文件--

输入你的姓名:

ycp2

ycp2


输入年纪

19

19

从文件读取内容

ycp2

再次读取文件读取内容

19

上面的实例中使用了 cin 对象的附加函数,比如 getline()函数从外部读取一行,ignore() 函数会忽略掉之前读语句留下的多余字符。

文件位置指针

istream 和 ostream 都提供了用于重新定位文件位置指针的成员函数。这些成员函数包括关于 istream 的 seekg(“seek get”)和关于 ostream 的 seekp(“seek put”)。

seekg 和 seekp 的参数通常是一个长整型。第二个参数可以用于指定查找方向。查找方向可以是 ios::beg(默认的,从流的开头开始定位),也可以是 ios::cur(从流的当前位置开始定位),也可以是 ios::end(从流的末尾开始定位)。

文件位置指针是一个整数值,指定了从文件的起始位置到指针所在位置的字节数。下面是关于定位 “get” 文件位置指针的实例:

// 定位到 fileObject 的第 n 个字节(假设是 ios::beg) fileObject.seekg( n );

// 把文件的读指针从 fileObject 当前位置向后移 n 个字节 fileObject.seekg( n, ios::cur );

// 把文件的读指针从 fileObject 末尾往回移 n 个字节 fileObject.seekg( n, ios::end );

// 定位到 fileObject 的末尾 fileObject.seekg( 0, ios::end );

二、C++ 异常处理

异常是程序在执行期间产生的问题。C++ 异常是指在程序运行时发生的特殊情况,比如尝试除以零的操作。

异常提供了一种转移程序控制权的方式。C++ 异常处理涉及到三个关键字:try、catch、throw。
throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的。

catch: 在您想要处理问题的地方,通过异常处理程序捕获异常。catch 关键字用于捕获异常。
try: try 块中的代码标识将被激活的特定异常。它后面通常跟着一个或多个 catch 块。

如果有一个块抛出一个异常,捕获异常的方法会使用 try 和 catch 关键字。try 块中放置可能抛出异常的代码,try 块中的代码被称为保护代码。使用 try/catch 语句的语法如下所示:

try
{
   // 保护代码
}catch( ExceptionName e1 )
{
   // catch 块
}catch( ExceptionName e2 )
{
   // catch 块
}catch( ExceptionName eN )
{
   // catch 块
}

如果 try 块在不同的情境下会抛出不同的异常,这个时候可以尝试罗列多个 catch 语句,用于捕获不同类型的异常。

抛出异常

可以使用 throw 语句在代码块中的任何地方抛出异常。throw 语句的操作数可以是任意的表达式,表达式的结果的类型决定了抛出的异常的类型。

以下是尝试除以零时抛出异常的实例:

double division(int a, int b)
{
   if( b == 0 )
   {
      throw "Division by zero condition!";
   }
   return (a/b);
}
捕获异常

catch 块跟在 try 块后面,用于捕获异常。可以指定想要捕捉的异常类型,这是由 catch 关键字后的括号内的异常声明决定的。

try
{
   // 保护代码
}catch( ExceptionName e )
{
  // 处理 ExceptionName 异常的代码
}

catch 块跟在 try 块后面,用于捕获异常。可以指定想要捕捉的异常类型,这是由 catch 关键字后的括号内的异常声明决定的。

try
{
   // 保护代码
}catch( ExceptionName e )
{
  // 处理 ExceptionName 异常的代码
}

实例:


#include <iostream>

using namespace std;


double division(int a ,int b){
    if(b == 0){
        throw "除数不能为0";
    }
    return  (a/b);
}
int main(){

    int x = 10;
    int b = 0;
    double  z = 0;

    try{
        z = division(x,b);
    }catch(const char* msg) {
        cerr <<msg<<endl;
    }
    return 0;
}

由于抛出了一个类型为 const char* 的异常,因此,当捕获该异常时,我们必须在 catch 块中使用 const char*。当上面的代码被编译和执行时,它会产生下列结果:

除数不能为0

C++ 标准的异常

C++ 提供了一系列标准的异常,定义在 中,我们可以在程序中使用这些标准的异常。它们是以父子类层次结构组织起来的,如下所示:

下表是对上面层次结构中出现的每个异常的说明:

异常 描述
std::exception 该异常是所有标准 C++ 异常的父类。
std::bad_alloc 该异常可以通过 new 抛出。
std::bad_cast 该异常可以通过 dynamic_cast 抛出。
std::bad_exception 这在处理 C++ 程序中无法预期的异常时非常有用。
std::bad_typeid 该异常可以通过 typeid 抛出。
std::logic_error 理论上可以通过读取代码来检测到的异常。
std::domain_error 当使用了一个无效的数学域时,会抛出该异常。
std::invalid_argument 当使用了无效的参数时,会抛出该异常。
std::length_error 当创建了太长的 std::string 时,会抛出该异常。
std::out_of_range 该异常可以通过方法抛出,例如 std::vector 和 std::bitset<>::operator
std::runtime_error 理论上不可以通过读取代码来检测到的异常。
std::overflow_error 当发生数学上溢时,会抛出该异常。
std::range_error 当尝试存储超出范围的值时,会抛出该异常。
std::underflow_error 当发生数学下溢时,会抛出该异常。
定义新的异常

可以通过继承和重载 exception 类来定义新的异常
实例:


#include <iostream>
#include <exception>

using namespace std;

struct MyException:public exception{
    const char * what() const throw(){
        return  "C++ 自定义异常 ";
    }
};

int main(){
    try {
        throw MyException();
    }catch (MyException& e){
        std::cout << "我的异常" <<std::endl;
        std::cout << e.what() <<std::endl;
    }catch(std::exception& e)
    {
        //其他的错误
    }

    return 0;
}

结果:

我的异常
C++ 自定义异常

####三、C++ 动态内存

C++ 程序中的内存分为两个部分:

  • 栈:在函数内部声明的所有变量都将占用栈内存。
  • 堆:这是程序中未使用的内存,在程序运行时可用于动态分配内存。
    很多时候,无法提前预知需要多少内存来存储某个定义变量中的特定信息,所需内存的大小需要在运行时才能确定。
    在 C++ 中,可以使用特殊的运算符为给定类型的变量在运行时分配堆内的内存,这会返回所分配的空间地址。这种运算符即 new 运算符。

如果不需要动态分配内存,可以使用 delete 运算符,删除之前由 new 运算符分配的内存。

new 和 delete 运算符

下面是使用 new 运算符来为任意的数据类型动态分配内存的通用语法:

new data-type;

在这里,data-type 可以是包括数组在内的任意内置的数据类型,也可以是包括类或结构在内的用户自定义的任何数据类型。先来看下内置的数据类型。例如,我们可以定义一个指向 double 类型的指针,然后请求内存,该内存在执行时被分配。我们可以按照下面的语句使用 new 运算符来完成这点:

double* pvalue  = NULL; // 初始化为 null 的指针
pvalue  = new double;   // 为变量请求内存

如果自由存储区已被用完,可能无法成功分配内存。所以建议检查 new 运算符是否返回 NULL 指针,并采取以下适当的操作:

double* pvalue  = NULL;
if( !(pvalue  = new double ))
{
   cout << "Error: out of memory." <<endl;
   exit(1);
 
}

malloc() 函数在 C 语言中就出现了,在 C++ 中仍然存在,但尽量不要使用 malloc() 函数。new 与 malloc() 函数相比,其主要的优点是,new 不只是分配了内存,它还创建了对象。
在任何时候,当觉得某个已经动态分配内存的变量不再需要使用时,可以使用 delete 操作符释放它所占用的内存,如下所示:

delete pvalue; // 释放 pvalue 所指向的内存

实例:


#include <iostream>

using namespace std;

int main(){
   double* pvalue = NULL ;//初始化为null的指针
    pvalue =new double;  //为变量请求内存

    *pvalue = 111111;

    cout <<"变量的值:" << *pvalue <<endl;

    delete pvalue;  //释放内存

    return  0;
}

结果:

变量的值:111111

数组的动态内存分配

分配内存


char* pvalue  = NULL;   // 初始化为 null 的指针
pvalue  = new char[20]; // 为变量请求内存

``

删除

`delete [] pvalue;        // 删除 pvalue 所指向的数组`


**多维数组分配内存**

一位数组

```cpp
// 动态分配,数组长度为 m
int *array=new int [m]//释放内存
delete [] array;

二维数组


int **array
// 假定数组第一维长度为 m, 第二维长度为 n
// 动态分配空间
array = new int *[m];
for( int i=0; i<m; i++ )
{
    array[i] = new int [n]  ;
}
//释放
for( int i=0; i<m; i++ )
{
    delete [] arrar[i];
}
delete [] array;

二维数组实例:


#include <iostream>

using namespace std;

int main(){
  int **p;
    int i,j;
     p = new int *[4];
    for(i = 0;i<4;i++){
        p[i] = new int [8];
    }

    for(i=0;i<4;i++){
        for(j=0;j<8;j++){
            p[i][j] = j*i;
        }
    }

    //打印

    for(i=0;i<4;i++){
        for(j=0;j<8;j++){
            if(j == 0) cout<<endl;
            cout<<p[i][j]<<endl;
        }
    }

    //释放内存
    for(i=0;i<4;i++){
        delete []p[i];
    }

    delete []p;
    return  0;
}

三维数组


#include <iostream>
using namespace std;
 
int main()
{   
    int i,j,k;   // p[2][3][4]
    
    int ***p;
    p = new int **[2]; 
    for(i=0; i<2; i++) 
    { 
        p[i]=new int *[3]; 
        for(j=0; j<3; j++) 
            p[i][j]=new int[4]; 
    }
    
    //输出 p[i][j][k] 三维数据
    for(i=0; i<2; i++)   
    {
        for(j=0; j<3; j++)   
        { 
            for(k=0;k<4;k++)
            { 
                p[i][j][k]=i+j+k;
                cout<<p[i][j][k]<<" ";
            }
            cout<<endl;
        }
        cout<<endl;
    }
    
    // 释放内存
    for(i=0; i<2; i++) 
    {
        for(j=0; j<3; j++) 
        {   
            delete [] p[i][j];   
        }   
    }       
    for(i=0; i<2; i++)   
    {       
        delete [] p[i];   
    }   
    delete [] p;  
    return 0;
}

对象的动态内存分配

对象与简单的数据类型一样。

实例:


#include <iostream>
using namespace std;
 
class Box
{
   public:
      Box() { 
         cout << "调用构造函数!" <<endl; 
      }
      ~Box() { 
         cout << "调用析构函数!" <<endl; 
      }
};
 
int main( )
{
   Box* myBoxArray = new Box[4];
 
   delete [] myBoxArray; // 删除数组
   return 0;
}

如果要为一个包含四个 Box 对象的数组分配内存,构造函数将被调用 4 次,同样地,当删除这些对象时,析构函数也将被调用相同的次数(4次)。
当上面的代码被编译和执行时,它会产生下列结果:

调用构造函数!
调用构造函数!
调用构造函数!
调用构造函数!
调用析构函数!
调用析构函数!
调用析构函数!
调用析构函数!

四、命名空间

命名空间作为附加信息来区分不同库中相同名称的函数、类、变量等。使用了命名空间即定义了上下文。本质上,命名空间就是定义了一个范围。

定义命名空间

命名空间的定义使用关键字 namespace,后跟命名空间的名称,如下所示:

namespace namespace_name {
   // 代码声明
}

为了调用带有命名空间的函数或变量,需要在前面加上命名空间的名称,如下所示:

name::code; // code 可以是变量或函数

实例


#include <iostream>
using namespace std;
 
// 第一个命名空间
namespace first_space{
   void func(){
      cout << "Inside first_space" << endl;
   }
}
// 第二个命名空间
namespace second_space{
   void func(){
      cout << "Inside second_space" << endl;
   }
}
int main ()
{
 
   // 调用第一个命名空间中的函数
   first_space::func();
   
   // 调用第二个命名空间中的函数
   second_space::func(); 
 
   return 0;
}

using 指令

可以使用 using namespace 指令,这样在使用命名空间时就可以不用在前面加上命名空间的名称。这个指令会告诉编译器,后续的代码将使用指定的命名空间中的名称。

using 指令引入的名称遵循正常的范围规则。名称从使用 using 指令开始是可见的,直到该范围结束。此时,在范围以外定义的同名实体是隐藏的。

不连续的命名空间

命名空间可以定义在几个不同的部分中,因此命名空间是由几个单独定义的部分组成的。一个命名空间的各个组成部分可以分散在多个文件中。
所以,如果命名空间中的某个组成部分需要请求定义在另一个文件中的名称,则仍然需要声明该名称。下面的命名空间定义可以是定义一个新的命名空间,也可以是为已有的命名空间增加新的元素:


namespace namespace_name {
   // 代码声明
}

嵌套的命名空间
namespace namespace_name1 {
   // 代码声明
   namespace namespace_name2 {
      // 代码声明
   }
}

可以通过使用 :: 运算符来访问嵌套的命名空间中的成员:
// 访问 namespace_name2 中的成员
using namespace namespace_name1::namespace_name2;

// 访问 namespace:name1 中的成员
using namespace namespace_name1;

五、C++ 模板

模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。
模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念。
每个容器都有一个单一的定义,比如 向量,我们可以定义许多不同类型的向量,比如 vector <int>vector <string>

使用模板来定义函数和类。

函数模板

模板函数定义的一般形式如下所示:

template <class type> ret-type func-name(parameter list)
{
   // 函数的主体
}

在这里,type 是函数所使用的数据类型的占位符名称。这个名称可以在函数定义中使用。

实例:


#include <iostream>
#include <string>

using namespace std;

template <typename T>

inline T const& Max (T const& a,T const& b){
    return a<b ? b:a;
}


int main()
{
    int a = 5;
    int b = 5;

    cout << Max(a,b) <<endl;

    double f1 =1.1;
    double f2 =1.2;

    cout <<Max(f1,f2);

    string s1 = "sss";
    string s2 = "aaa";

    cout <<max(s1,s1);

    return 0;
}

结果:

5 1.2sss

C++ 中 typename 和 class 的区别

在 C++ Template 中很多地方都用到了 typename 与 class 这两个关键字,而且好像可以替换,是不是这两个关键字完全一样呢?
相信学习 C++ 的人对 class 这个关键字都非常明白,class 用于定义类,在模板引入 c++ 后,最初定义模板的方法为:

template<class T>......
这里 class 关键字表明T是一个类型,后来为了避免 class 在这两个地方的使用可能给人带来混淆,所以引入了 typename 这个关键字,它的作用同class 一样表明后面的符号为一个类型,这样在定义模板的时候就可以使用下面的方式了:


template<typename
T>......

在模板定义语法中关键字 class 与 typename 的作用完全一样。

typename 难道仅仅在模板定义中起作用吗?其实不是这样,typename 另外一个作用为:使用嵌套依赖类型(nested depended name),如下所示:

class MyArray 
{ 
    publictypedef int LengthType;
.....
}

template<class T>
void MyMethod( T myarr ) 
{ 
    typedef typename T::LengthType LengthType; 
    LengthType length = myarr.GetLength; 
}

这个时候 typename 的作用就是告诉 c++ 编译器,typename 后面的字符串为一个类型名称,而不是成员函数或者成员变量,这个时候如果前面没有
typename,编译器没有任何办法知道 T::LengthType 是一个类型还是一个成员名称(静态数据成员或者静态函数),所以编译不能够通过。

类模板

正如定义函数模板一样,也可以定义类模板。泛型类声明的一般形式如下所示:

template <class type> class class-name {
.
.
.
}

在这里,type 是占位符类型名称,可以在类被实例化的时候进行指定。可以使用一个逗号分隔的列表来定义多个泛型数据类型。

实例:


#include <iostream>
#include <string>
#include <vector>
using namespace std;

template <class T>

class Stack{
private:
    vector<T> elems; //元素

public:
    void push(T const&);

    void pop();

    T top() const ;

    bool empty(){
        return elems.empty();
    }
};

template<class T>
void Stack<T>::push(T const& elem) {
    elems.push_back(elem);// 追加传入元素的副本
}

template<class T>
void Stack<T>::pop() {
    if(elems.empty()){
        throw  out_of_range(" 空栈!");
    }
    //删除最后一个元素

    elems.pop_back();
}

template<class T>
T Stack<T>::top() const {
    if (elems.empty()) {
        throw out_of_range("Stack<>::top(): empty stack");
    }
    // 返回最后一个元素的副本
    return elems.back();
}


int main()
{
    try {
        Stack<int> intStack; //int 类型的栈
        Stack<string> stringStack; //string 类型的栈

        intStack.push(54); //入栈
        cout<<intStack.top()<<endl; // 返回最后一个元素的副本

        stringStack.push("ycpnb"); //入栈

        cout<<"字符"<<stringStack.top()<<std::endl;// 返回最后一个元素的副本

        stringStack.pop(); // 出栈
        stringStack.pop(); // 出栈

    }catch(exception const& e) {
        cerr <<e.what()<<endl;
        return -1;
    }

}


结果:


54
 空栈!
字符ycpnb

六、C++ 预处理器

处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。
所有的预处理器指令都是以井号(#)开头,只有空格字符可以出现在预处理指令之前。预处理指令之前所有的实例中都有 #include 指令。这个宏用于把头文件包含到源文件中。
C++ 还支持很多预处理指令,比如 #include#define#if#else#line 等。

#define 预处理

define 预处理指令用于创建符号常量。该符号常量通常称为宏,指令的一般形式是:

#define macro-name replacement-text

当这一行代码出现在一个文件中时,在该文件中后续出现的所有宏都将会在程序编译之前被替换为 replacement-text。例如:

#include <iostream>
using namespace std;
 
#define PI 3.14159
 
int main ()
{
 
    cout << "Value of PI :" << PI << endl; 
 
    return 0;
}

测试这段代码,看看预处理的结果。假设源代码文件已经存在,接下来使用 -E 选项进行编译,并把结果重定向到 test.p。现在,如果查看 test.p 文件,将会看到它已经包含大量的信息,而且在文件底部的值被改为如下:

$ gcc -E test.cpp > test.p

...
int main ()
{
 
    cout << "Value of PI :" << 3.14159 << endl; 

    return 0;
}

参数宏

可以使用 #define 来定义一个带有参数的宏

实例:


#include <iostream>
using namespace std;
 
#define MIN(a,b) (a<b ? a : b)
 
int main ()
{
   int i, j;
   i = 100;
   j = 30;
   cout <<"较小的值为:" << MIN(i, j) << endl;
 
    return 0;
}

条件编译

有几个指令可以用来有选择地对部分程序源代码进行编译。这个过程被称为条件编译。
条件预处理器的结构与 if 选择结构很像。如下面这段预处理器的代码:

#ifndef NULL
   #define NULL 0
#endif

可以只在调试时进行编译,调试开关可以使用一个宏来实现,如下所示:

#ifdef DEBUG
   cerr <<"Variable x = " << x << endl;
#endif

如果在指令 #ifdef DEBUG 之前已经定义了符号常量 DEBUG,则会对程序中的 cerr 语句进行编译。可以使用 #if 0 语句注释掉程序的一部分,如下所示:


#if 0
   不进行编译的代码
#endif

实例:


#include <iostream>
using namespace std;
#define DEBUG
 
#define MIN(a,b) (((a)<(b)) ? a : b)
 
int main ()
{
   int i, j;
   i = 100;
   j = 30;
#ifdef DEBUG
   cerr <<"Trace: Inside main function" << endl;
#endif
 
#if 0
   /* 这是注释部分 */
   cout << MKSTR(HELLO C++) << endl;
#endif
 
   cout <<"The minimum is " << MIN(i, j) << endl;
 
#ifdef DEBUG
   cerr <<"Trace: Coming out of main function" << endl;
#endif
    return 0;
}

** #和## 运算符**

### 预处理运算符在 C++ 和 ANSI/ISO C 中都是可用的。# 运算符会把 replacement-text 令牌转换为用引号引起来的字符串。

C++ 中的预定义宏

C++ 提供了下表所示的一些预定义宏:

描述
LINE 这会在程序编译时包含当前行号。
FILE 这会在程序编译时包含当前文件名。
DATE 这会包含一个形式为 month/day/year 的字符串,它表示把源文件转换为目标代码的日期。
TIME 这会包含一个形式为 hour:minute:second 的字符串,它表示程序被编译的时间。

####七、C++ 信号处理

号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断。

有些信号不能被程序捕获,但是下表所列信号可以在程序中捕获,并可以基于信号采取适当的动作。这些信号是定义在 C++ 头文件 中。

信号 描述
SIGABRT 程序的异常终止,如调用 abort。
SIGFPE 错误的算术运算,比如除以零或导致溢出的操作。
SIGILL 检测非法指令。
SIGINT 接收到交互注意信号。
SIGSEGV 非法访问内存。
SIGTERM 发送到程序的终止请求。
signal() 函数

C++ 信号处理库提供了 signal 函数,用来捕获突发事件。以下是 signal() 函数的语法:

void (*signal (int sig, void (*func)(int)))(int);

这个函数接收两个参数:第一个参数是一个整数,代表了信号的编号;第二个参数是一个指向信号处理函数的指针。

####八、C++ 多线程

线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序。一般情况下,两种类型的多任务处理:基于进程和基于线程。

  • 基于进程的多任务处理是程序的并发执行。

  • 基于线程的多任务处理是同一程序的片段的并发执行。

多线程程序包含可以同时运行的两个或多个部分。这样的程序中的每个部分称为一个线程,每个线程定义了一个单独的执行路径。

九、C++ Web 编程

什么是 CGI?
  • 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的。
  • CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下:
  • 公共网关接口(CGI),是一种用于外部网关程序与信息服务器(如 HTTP 服务器)对接的接口标准。
  • 目前的版本是 CGI/1.1,CGI/1.2 版本正在推进中。
CGI 架构图
Web 服务器配置

进行 CGI 编程之前,请确保 Web 服务器支持 CGI,并已配置成可以处理 CGI 程序。所有由 HTTP 服务器执行的 CGI 程序,都必须在预配置的目录中。该目录称为 CGI 目录,按照惯例命名为 /var/www/cgi-bin。虽然 CGI 文件是 C++ 可执行文件,但是按照惯例它的扩展名是 .cgi。
默认情况下,Apache Web 服务器会配置在 /var/www/cgi-bin 中运行 CGI 程序。如果想指定其他目录来运行 CGI 脚本,可以在 httpd.conf 文件中修改以下部分:

<Directory "/var/www/cgi-bin">
   AllowOverride None
   Options ExecCGI
   Order allow,deny
   Allow from all
</Directory>
 
<Directory "/var/www/cgi-bin">
Options All
</Directory>

```
在这里,假设已经配置好 Web 服务器并能成功运行,可以运行任意的 CGI 程序,比如 Perl 或 Shell 等。


实例:

```cpp

#include <iostream>
using namespace std;
 
int main ()
{
    
   cout << "Content-type:text/html\r\n\r\n";
   cout << "<html>\n";
   cout << "<head>\n";
   cout << "<title>Hello World - 第一个 CGI 程序</title>\n";
   cout << "</head>\n";
   cout << "<body>\n";
   cout << "<h2>Hello World! 这是我的第一个 CGI 程序</h2>\n";
   cout << "</body>\n";
   cout << "</html>\n";
   
   return 0;
}

```

发布了33 篇原创文章 · 获赞 1 · 访问量 8299

猜你喜欢

转载自blog.csdn.net/u012914309/article/details/103421833