Wallis公式(点火公式)

W a l l i s Wallis 公式(点火公式):

I n = 0 π 2 ( s i n n x ) d x = 0 π 2 ( c o s n x ) d x = { ( n 1 ) ! ! n ! ! × π 2 , n ( n 1 ) ! ! n ! ! × 1    , n 1 I_n=\large\int_{0}^\frac{\pi}{2}(sin^nx)dx=\large\int_{0}^\frac{\pi}{2}(cos^nx)dx\\=\begin{cases}\dfrac{(n-1)!!}{n!!}\times\dfrac{\pi}{2},n为正偶数\\\dfrac{(n-1)!!}{n!!}\times1\ \ ,n为大于1的奇数\end{cases}

特别地: n = 1 0 π 2 ( s i n n x ) d x = 0 π 2 ( c o s n x ) d x = 1 n=1时\rightarrow \large\int_{0}^\frac{\pi}{2}(sin^nx)dx=\large\int_{0}^\frac{\pi}{2}(cos^nx)dx=1

推广:

0 π ( s i n n x ) d x = 2 0 π 2 ( s i n n x ) d x \large\int_{0}^\pi(sin^nx)dx=2\large\int_{0}^\frac{\pi}{2}(sin^nx)dx

0 π ( c o s n x ) d x = { 0 , n 2 0 π 2 ( c o s n x ) d x , n \large\int_{0}^\pi(cos^nx)dx=\begin{cases}0,n为正奇数\\2\large\int_{0}^\frac{\pi}{2}(cos^nx)dx,n为正偶数\end{cases}

0 2 π ( s i n n x ) d x = 0 2 π ( c o s n x ) d x = { 0 , n 4 0 π 2 ( s i n n x ) d x n \large\int_{0}^{2\pi}(sin^nx)dx=\int_{0}^{2\pi}(cos^nx)dx\\=\begin{cases}0,n为正奇数\\ \large4\int_{0}^\frac{\pi}{2}(sin^nx)dx,n为正偶数\end{cases}

纯手打,记录下。

猜你喜欢

转载自blog.csdn.net/weixin_45750972/article/details/106756134