第三章模型建立和评估---评价

第三章 模型搭建和评估-评估

根据之前的模型的建模,我们知道如何运用sklearn这个库来完成建模,以及我们知道了的数据集的划分等等操作。那么一个模型我们怎么知道它好不好用呢?以至于我们能不能放心的使用模型给我的结果呢?那么今天的学习的评估,就会很有帮助。

加载下面的库

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from IPython.display import Image
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

任务:加载数据并分割测试集和训练集

from sklearn.model_selection import train_test_split
#写入代码
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用,x是清洗好的数据,y是我们要预测的存活数据'Survived'
data = pd.read_csv('clear_data.csv')
train = pd.read_csv('train.csv')
X = data
y = train['Survived']
data.head()
PassengerId Pclass Age SibSp Parch Fare Sex_female Sex_male Embarked_C Embarked_Q Embarked_S
0 0 3 22.0 1 0 7.2500 0 1 0 0 1
1 1 1 38.0 1 0 71.2833 1 0 1 0 0
2 2 3 26.0 0 0 7.9250 1 0 0 0 1
3 3 1 35.0 1 0 53.1000 1 0 0 0 1
4 4 3 35.0 0 0 8.0500 0 1 0 0 1
#写入代码
y.head()

0    0
1    1
2    1
3    1
4    0
Name: Survived, dtype: int64
#写入代码
#对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)

#写入代码
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
F:\dev\anaconda\envs\python35\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)





LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)

模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均

【思考】:将上面的概念进一步的理解,大家可以做一下总结

思考回答:

准确率

  • 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷。比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。

精确率和召回率

  • 精确率和召回率。精确率是指分类正确的正样本个数占分类器判定为正样本的样本个数的比例。召回率是指分类正确的正样本个数占真正的正样本个数的比例。
  • Precision值和Recall值是既矛盾又统一的两个指标,为了提高Precision值,分类器需要尽量在“更有把握”时才把样本预测为正样本,但此时往- 往会因为过于保守而漏掉很多“没有把握”的正样本,导致Recall值降低。
  • 只用某个点对应的精确率和召回率是不能全面地衡量模型的性能,只有通过P-R曲线的整体表现,才能够对模型进行更为全面的评估。、

P-R曲线

  • P-R曲线的横轴是召回率,纵轴是精确率。对于一个排序模型来说,其P-R曲线上的一个点代表着,在某一闽值下,模型将大于该阑值的结果判定为正样本,小于该阈值的结果判定为负样本,此时返回结果对应的召回率和精确率。整条P-R曲线是通过将闽值从高到低移动而生成的。图2.1是P-R曲线样例图,其中实线代表模型A的P-R曲线,虚线代表模型B的P-R曲线。原点附近代表当阈值最大时模型的精确率和召回率。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sUksHnlE-1598449999620)(attachment:1598289366%281%29.png)]

F1score是精准率和召回率的调和平均值,它定义为

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vrEuKNiX-1598449999625)(attachment:1598289297%281%29.png)]

RMSE

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hGE0mQ65-1598449999627)(attachment:1598289316%281%29.png)]

  • RMSE能够很好地反映回归模型预测值与真实值的偏离程度。但在实际问题中,如果存在个别偏离程度非常大的离群点(Outlier)时,即使离群点数量非常少,也会让RMSE指标变得很差。
解决方案
  • 第一,如果我们认定这些离群点是“噪声点”的话,就需要在数据预处理的阶段把这些噪声点过滤掉。
  • 第二,如果不认为这些离群点是“噪声点”的话,就需要进一步提高模型的预测能力,将离群点产生的机制建模进去(这是一个宏大的话题,这里就不展开讨论了)。
  • 第三,可以找一个更合适的指标来评估该模型。关于评估指标,其实是存在比RMSE的鲁棒性更好的指标,比如平均绝对百分比误差(Mean Absolute Percent Error,MAPE),它定义为[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LdAkscVq-1598449999629)(attachment:1598289334%281%29.png)]
    相比RMSE,MAPE相当于把每个点的误差进行了归一化,降低了个别离群点带来的绝对误差的影响。

ROC曲线

  • ROC曲线的横坐标为假阳性率(False Positive Rate,FPR);纵坐标为真阳性率(True Positive Rate,TPR)。FPR和TPR的计算方法分别为[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Okgcm7nH-1598449999631)(attachment:1598289390%281%29.png)]
    上式中,P是真实的正样本的数量,N是真实的负样本的数量,TP是P个正样本中被分类器预测为正样本的个数,FP是N个负样本中被分类器预测为正样本的个数。

  • 相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。

任务一:交叉验证

  • 用10折交叉验证来评估之前的逻辑回归模型
  • 计算交叉验证精度的平均值

k-fold交叉验证:
首先将全部样本划分成k个大小相等的样本子集;依次遍历这k个子集,每次把当前子集作为验证集,其余所有子集作为训练集,进行模型的训练和评估;最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k经常取10。

留一验证:
每次留下1个样本作为验证集,其余所有样本作为测试集。样本总数为n,依次对n个样本进行遍历,进行n次验证,再将评估指标求平均值得到最终的评估指标。在样本总数较多的情况下,留一验证法的时间开销极大。事实上,留一验证是留p验证的特Cp例。留p验证是每次留下p个样本作为验证集,而从n个元素中选择p个元素有Cpn种可能,因此它的时间开销更是远远高于留一验证,故而很少在实际工程中被应用。

#提示:交叉验证
Image('Snipaste_2020-01-05_16-37-56.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3pumnKkT-1598449999633)(output_18_0.png)]

提示4

  • 交叉验证在sklearn中的模块为sklearn.model_selection
#写入代码
from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
scores
array([0.82089552, 0.74626866, 0.74626866, 0.79104478, 0.86567164,
       0.8358209 , 0.76119403, 0.8358209 , 0.74242424, 0.75757576])
# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))
Average cross-validation score: 0.79

思考4

  • k折越多的情况下会带来什么样的影响?

思考回答

时间开销增大,2017年的一项研究给出了另一种经验式的选择方法[3],作者建议K约等于log(n) 且保证 n/K>3d ,此处的n代表了数据量,d代表了特征数。

任务二:混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数

【思考】什么是二分类问题的混淆矩阵,理解这个概念,知道它主要是运算到什么任务中的

#思考回答


#提示:混淆矩阵
Image('Snipaste_2020-01-05_16-38-26.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-px2xj8sB-1598449999634)(output_28_0.png)]

#提示:准确率 (Accuracy),精确度(Precision),Recall,f-分数计算方法
Image('Snipaste_2020-01-05_16-39-27.png')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xy5E7iZ4-1598449999635)(output_29_0.png)]

提示5

  • 混淆矩阵的方法在sklearn中的sklearn.metrics模块
  • 混淆矩阵需要输入真实标签和预测标签
  • 精确率、召回率以及f-分数可使用classification_report模块
from sklearn.metrics import confusion_matrix
# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
F:\dev\anaconda\envs\python35\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)





LogisticRegression(C=100, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
# 模型预测结果
pred = lr.predict(X_train)

# 混淆矩阵
confusion_matrix(y_train, pred)
array([[354,  58],
       [ 82, 174]], dtype=int64)
from sklearn.metrics import classification_report
# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))
              precision    recall  f1-score   support

           0       0.81      0.86      0.83       412
           1       0.75      0.68      0.71       256

    accuracy                           0.79       668
   macro avg       0.78      0.77      0.77       668
weighted avg       0.79      0.79      0.79       668

【思考】

  • 如果自己实现混淆矩阵的时候该注意什么问题
#思考回答


任务三:ROC曲线

  • 绘制ROC曲线

【思考】什么是OCR曲线,OCR曲线的存在是为了解决什么问题?

#思考
ROC曲线是Receiver Operating Characteristic Curve的简称,中文名为“受试者工作特征曲线”。ROC曲线源于军事领域,而后在医学领域应用甚广,“受试者工作特征曲线”
这一名称也正是来自于医学领域。

提示6

  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

<matplotlib.legend.Legend at 0x2ed396c5a58>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6HCPKokq-1598449999636)(output_42_1.png)]

思考6

  • 对于多分类问题如何绘制ROC曲线

假设测试样本个数为m,类别个数为n(假设类别标签分别为:0,2,…,n-1)。在训练完成后,计算出每个测试样本的在各类别下的概率或置信度,得到一个[m, n]形状的矩阵P,每一行表示一个测试样本在各类别下概率值(按类别标签排序)。相应地,将每个测试样本的标签转换为类似二进制的形式,每个位置用来标记是否属于对应的类别(也按标签排序,这样才和前面对应),由此也可以获得一个[m, n]的标签矩阵L。

     比如n等于3,标签应转换为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-09VTKMaJ-1598449999637)(attachment:1598446455%281%29.png)]

    方法1:每种类别下,都可以得到m个测试样本为该类别的概率(矩阵P中的列)。所以,根据概率矩阵P和标签矩阵L中对应的每一列,可以计算出各个阈值下的假正例率(FPR)和真正例率(TPR),从而绘制出一条ROC曲线。这样总共可以绘制出n条ROC曲线。最后对n条ROC曲线取平均,即可得到最终的ROC曲线。

    方法2:首先,对于一个测试样本:1)标签只由0和1组成,1的位置表明了它的类别(可对应二分类问题中的‘’正’’),0就表示其他类别(‘’负‘’);2)要是分类器对该测试样本分类正确,则该样本标签中1对应的位置在概率矩阵P中的值是大于0对应的位置的概率值的。基于这两点,将标签矩阵L和概率矩阵P分别按行展开,转置后形成两列,这就得到了一个二分类的结果。所以,此方法经过计算后可以直接得到最终的ROC曲线。

   上面的两个方法得到的ROC曲线是不同的,当然曲线下的面积AUC也是不一样的。 在python中,方法1和方法2分别对应sklearn.metrics.roc_auc_score函数中参数average值为'macro'和'micro'的情况。

下面以方法2为例,直接上代码,概率矩阵P和标签矩阵L分别对应代码中的y_score和y_one_hot:

计算auc值

#思考回答

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn import metrics
from sklearn.preprocessing import label_binarize
  
if __name__ == '__main__':
    np.random.seed(0)
#     data = pd.read_csv('iris.data', header = None)  #读取数据
    from sklearn.datasets import load_iris
    data = load_iris() #得到数据特征
    iris_target = data.target #得到数据对应的标签
    iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式
    iris_types = np.unique(iris_target)
    n_class = iris_types.size
    x = iris_features.iloc[:, :2]  #只取前面两个特征
    y = pd.Categorical(iris_target).codes  #将标签转换0,1,...
    x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.6, random_state = 0)
    y_one_hot = label_binarize(y_test, np.arange(n_class))  #装换成类似二进制的编码
    alpha = np.logspace(-2, 2, 20)  #设置超参数范围
    model = LogisticRegressionCV(Cs = alpha, cv = 3, penalty = 'l2')  #使用L2正则化
    model.fit(x_train, y_train)
    print ('超参数:', model.C_)
    # 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
    y_score = model.predict_proba(x_test)
    # 1、调用函数计算micro类型的AUC
    print('调用函数auc:', metrics.roc_auc_score(y_one_hot, y_score, average='micro')) 
    # 2、手动计算micro类型的AUC
    #首先将矩阵y_one_hot和y_score展开,然后计算假正例率FPR和真正例率TPR
    fpr, tpr, thresholds = metrics.roc_curve(y_one_hot.ravel(),y_score.ravel())
    auc = metrics.auc(fpr, tpr)
    print ('手动计算auc:', auc)
    #绘图
    mpl.rcParams['font.sans-serif'] = u'SimHei'
    mpl.rcParams['axes.unicode_minus'] = False
    #FPR就是横坐标,TPR就是纵坐标
    plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
    plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
    plt.xlim((-0.01, 1.02))
    plt.ylim((-0.01, 1.02))
    plt.xticks(np.arange(0, 1.1, 0.1))
    plt.yticks(np.arange(0, 1.1, 0.1))
    plt.xlabel('False Positive Rate', fontsize=13)
    plt.ylabel('True Positive Rate', fontsize=13)
    plt.grid(b=True, ls=':')
    plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
    plt.title(u'鸢尾花数据Logistic分类后的ROC和AUC', fontsize=17)
    plt.show()

超参数: [0.18329807 0.18329807 0.18329807]
调用函数auc: 0.8884722222222222
手动计算auc: 0.8884722222222222

在这里插入图片描述

plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)
<matplotlib.legend.Legend at 0x2ed3e7c7d68>

在这里插入图片描述

y_test_hot = label_binarize(y_test,classes =(0, 1)) # 将测试集标签数据用二值化编码的方式转换为矩阵

lr_y_score=lr.decision_function(X_test) # 得到预测的损失值

svm_y_score = svm.decision_function(X_test) # 得到预测的损失值

lr_fpr,lr_tpr,lr_threasholds=metrics.roc_curve(y_test_hot.ravel(),lr_y_score.ravel()) # 计算ROC的值,lr_threasholds为阈值

svm_fpr,svm_tpr,svm_threasholds=metrics.roc_curve(y_test_hot.ravel(),svm_y_score.ravel())#计算ROC的值,svm_threasholds为阈值

lr_auc=metrics.auc(lr_fpr,lr_tpr)
#‘lr_auc:0.5674626772245001’
svm_auc=metrics.auc(lr_fpr,lr_tpr)
#‘svm_auc:0.5674626772245001’

【思考】你能从这条OCR曲线的到什么信息?这些信息可以做什么?

  • 顾名思义,AUC指的是ROC曲线下的面积大小,该值能够量化地反映基于ROC曲线衡量出的模型性能。计算AUC值只需要沿着ROC横轴做积分就可以了。由于ROC曲线一般都处于y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1-p就可以得到一个更好的分类器),所以AUC的取值一般在0.5~1之间。AUC越大,说明分类器越可能把真正的正样本排在前面,分类性能越好。

猜你喜欢

转载自blog.csdn.net/weixin_45569785/article/details/108248479