Paddle强化学习从入门到实践 (Day5):连续动作空间的求解

离散空间和连续空间

之前我们做出的决策都是基于离散状态的,简单来说是类似于在做“选择题”。而连续的动作,我们输出的将不是某个动作,而是更加细致的动作的程度,类比深度学习的分类任务与回归任务。当然,具体选何种模型可以根据具体情况灵活选择,有时离散动作和连续动作之间是可以灵活转换的。

选择回归模型,那么意味着输出动作种类是无限多的,因此为了减少不确定性,使用连续动作输出的模型时,使用的是确定性策略,即同样的输入会得到同样的输出,而随即策略是有一定的概率得到不同的输出结果的。

用于连续动作输出的值我们需要通过tanh将其收敛至[-1,1]后,再缩放道相应的动作程度之中:

DDPG算法

在上一节中,我们了解道了reinforce采用的梯策略是MC采样,而DDPG使用的是TD的梯度策略,这二者的具体区别可以查看https://blog.csdn.net/wqy20140101/article/details/89598464。总结性地来说:TD有偏差,但方差小;MC无偏差,但方差大

其具体的梯度策略借鉴了DQN的结构,采用目标网络与经验回放的结构

在此基础上,DDPG还引入了A-C结构,即先用A来感知环境,C根据感知的情况做出决策:

再将目标网络与经验回放的结构与其融合后,DDPG的核心深度学模块就变为了:

代码与实践结果

A-C模型定义

class ActorModel(parl.Model):
    def __init__(self, act_dim):
        hid_size = 100

        self.fc1 = layers.fc(size=hid_size, act='relu')
        self.fc2 = layers.fc(size=act_dim, act='tanh')

    def policy(self, obs):
        hid = self.fc1(obs)
        means = self.fc2(hid)
        return means

class CriticModel(parl.Model):
    def __init__(self):
        hid_size = 256

        self.fc1 = layers.fc(size=hid_size, act='relu')
        self.fc2 = layers.fc(size=1, act=None)

    def value(self, obs, act):
        concat = layers.concat([obs, act], axis=1)
        hid = self.fc1(concat)
        Q = self.fc2(hid)
        Q = layers.squeeze(Q, axes=[1])
        return


class QuadrotorModel(parl.Model):
    def __init__(self, act_dim):
        self.actor_model = ActorModel(act_dim)
        self.critic_model = CriticModel()

    def policy(self, obs):
        return self.actor_model.policy(obs)

    def value(self, obs, act):
        return self.critic_model.value(obs, act)

    def get_actor_params(self):
        return self.actor_model.parameters()

DDPG算法

class DDPG(parl.Algorithm):
    def __init__(self,
                 model,
                 gamma=None,
                 tau=None,
                 actor_lr=None,
                 critic_lr=None):
        """  DDPG algorithm
        
        Args:
            model (parl.Model): actor and critic 的前向网络.
                                model 必须实现 get_actor_params() 方法.
            gamma (float): reward的衰减因子.
            tau (float): self.target_model 跟 self.model 同步参数 的 软更新参数
            actor_lr (float): actor 的学习率
            critic_lr (float): critic 的学习率
        """
        assert isinstance(gamma, float)
        assert isinstance(tau, float)
        assert isinstance(actor_lr, float)
        assert isinstance(critic_lr, float)
        self.gamma = gamma
        self.tau = tau
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr

        self.model = model
        self.target_model = deepcopy(model)

    def predict(self, obs):
        """ 使用 self.model 的 actor model 来预测动作
        """
        return self.model.policy(obs)

    def learn(self, obs, action, reward, next_obs, terminal):
        """ 用DDPG算法更新 actor 和 critic
        """
        actor_cost = self._actor_learn(obs)
        critic_cost = self._critic_learn(obs, action, reward, next_obs,
                                         terminal)
        return actor_cost, critic_cost

    def _actor_learn(self, obs):
        action = self.model.policy(obs)
        Q = self.model.value(obs, action)
        cost = layers.reduce_mean(-1.0 * Q)
        optimizer = fluid.optimizer.AdamOptimizer(self.actor_lr)
        optimizer.minimize(cost, parameter_list=self.model.get_actor_params())
        return cost

    def _critic_learn(self, obs, action, reward, next_obs, terminal):
        next_action = self.target_model.policy(next_obs)
        next_Q = self.target_model.value(next_obs, next_action)

        terminal = layers.cast(terminal, dtype='float32')
        target_Q = reward + (1.0 - terminal) * self.gamma * next_Q
        target_Q.stop_gradient = True

        Q = self.model.value(obs, action)
        cost = layers.square_error_cost(Q, target_Q)
        cost = layers.reduce_mean(cost)
        optimizer = fluid.optimizer.AdamOptimizer(self.critic_lr)
        optimizer.minimize(cost)
        return cost

    def sync_target(self, decay=None, share_vars_parallel_executor=None):
        """ self.target_model从self.model复制参数过来,可设置软更新参数
        """
        if decay is None:
            decay = 1.0 - self.tau
        self.model.sync_weights_to(
            self.target_model,
            decay=decay,
            share_vars_parallel_executor=share_vars_parallel_executor)

Agent

class Agent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)

        # 注意:最开始先同步self.model和self.target_model的参数.
        self.alg.sync_target(decay=0)

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.pred_act = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            act = layers.data(
                name='act', shape=[self.act_dim], dtype='float32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            _, self.critic_cost = self.alg.learn(obs, act, reward, next_obs,
                                                 terminal)

    def predict(self, obs):
        obs = np.expand_dims(obs, axis=0)
        act = self.fluid_executor.run(
            self.pred_program, feed={'obs': obs},
            fetch_list=[self.pred_act])[0]
        act = np.squeeze(act)
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        feed = {
            'obs': obs,
            'act': act,
            'reward': reward,
            'next_obs': next_obs,
            'terminal': terminal
        }
        critic_cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.critic_cost])[0]
        self.alg.sync_target()
        return critic_cost

经验回放

import random
import collections
import numpy as np


class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    def append(self, exp):
        self.buffer.append(exp)

    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), \
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

训练与测试

def run_episode(agent, env, rpm):
    obs = env.reset()
    total_reward = 0
    steps = 0
    while True:
        steps += 1
        batch_obs = np.expand_dims(obs, axis=0)
        action = agent.predict(batch_obs.astype('float32'))

        # 增加探索扰动, 输出限制在 [-1.0, 1.0] 范围内
        action = np.clip(np.random.normal(action, NOISE), -1.0, 1.0)

        next_obs, reward, done, info = env.step(action)

        action = [action]  # 方便存入replaymemory
        rpm.append((obs, action, REWARD_SCALE * reward, next_obs, done))

        if len(rpm) > MEMORY_WARMUP_SIZE and (steps % 5) == 0:
            (batch_obs, batch_action, batch_reward, batch_next_obs,
             batch_done) = rpm.sample(BATCH_SIZE)
            agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
                        batch_done)

        obs = next_obs
        total_reward += reward

        if done or steps >= 200:
            break
    return total_reward


def evaluate(env, agent, render=False):
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        total_reward = 0
        steps = 0
        while True:
            batch_obs = np.expand_dims(obs, axis=0)
            action = agent.predict(batch_obs.astype('float32'))
            action = np.clip(action, -1.0, 1.0)

            steps += 1
            next_obs, reward, done, info = env.step(action)

            obs = next_obs
            total_reward += reward

            if render:
                env.render()
            if done or steps >= 200:
                break
        eval_reward.append(total_reward)
    return np.mean(eval_reward)

环境配置、超参与流程

ACTOR_LR = 0.0002   # Actor网络更新的 learning rate
CRITIC_LR = 0.0005   # Critic网络更新的 learning rate

GAMMA = 0.99        # reward 的衰减因子,一般取 0.9 到 0.999 不等
TAU = 0.001         # target_model 跟 model 同步参数 的 软更新参数
MEMORY_SIZE = 1e6   # replay memory的大小,越大越占用内存
MEMORY_WARMUP_SIZE = 1e4      # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn
REWARD_SCALE = 0.01       # reward 的缩放因子
BATCH_SIZE = 512          # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
TRAIN_TOTAL_STEPS = 1e6   # 总训练步数
TEST_EVERY_STEPS = 1e4    # 每个N步评估一下算法效果,每次评估5个episode求平均reward


# 创建飞行器环境
env = ContinuousCartPoleEnv()
env.reset()
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]



act_dim = 4
model = QuadrotorModel(act_dim=act_dim)
alg = DDPG(model,gamma=GAMMA,tau=TAU, actor_lr=ACTOR_LR, critic_lr=CRITIC_LR)
agent = QuadrotorAgent(alg,obs_dim = obs_dim,act_dim =act_dim)
#ckpt = 'model_dir/steps_990602.ckpt'
agent.restore(ckpt)


# parl库也为DDPG算法内置了ReplayMemory,可直接从 parl.utils 引入使用
rpm = ReplayMemory(int(MEMORY_SIZE), obs_dim, act_dim)


# 启动训练
test_flag = 0
total_steps = 0
while total_steps < TRAIN_TOTAL_STEPS:
    train_reward, steps = run_episode(env, agent, rpm)
    total_steps += steps
    #logger.info('Steps: {} Reward: {}'.format(total_steps, train_reward)) # 打印训练reward

    if total_steps // TEST_EVERY_STEPS >= test_flag: # 每隔一定step数,评估一次模型
        while total_steps // TEST_EVERY_STEPS >= test_flag:
            test_flag += 1
 
        evaluate_reward = evaluate(env, agent)
        logger.info('Steps {}, Test reward: {}'.format(
            total_steps, evaluate_reward)) # 打印评估的reward

        # 每评估一次,就保存一次模型,以训练的step数命名
        ckpt = 'model_dir/steps_{}.ckpt'.format(total_steps)
        agent.save(ckpt)

实验结果

训练过程相对稳定,在一段时间后分数会突然上涨:

猜你喜欢

转载自blog.csdn.net/fan1102958151/article/details/106928288
今日推荐