python 学习笔记 8.4 (54-按时打卡-QQ)

Task7
一、类与对象

  1. 对象 = 属性 + 方法
    对象是类的实例。换句话说,类主要定义对象的结构,然后我们以类为模板创建对象。类不但包含方法定义,而且还包含所有实例共享的数据。
    封装:信息隐蔽技术
    我们可以使用关键字 class 定义 Python 类,关键字后面紧跟类的名称、分号和类的实现。
class Turtle:  # Python中的类名约定以大写字母开头
    """关于类的一个简单例子"""
    # 属性
    color = 'green'
    weight = 10
    legs = 4
    shell = True
    mouth = '大嘴'

    # 方法
    def climb(self):
        print('我正在很努力的向前爬...')

    def run(self):
        print('我正在飞快的向前跑...')

    def bite(self):
        print('咬死你咬死你!!')

    def eat(self):
        print('有得吃,真满足...')

    def sleep(self):
        print('困了,睡了,晚安,zzz')


tt = Turtle()
print(tt)
# <__main__.Turtle object at 0x0000007C32D67F98>

print(type(tt))
# <class '__main__.Turtle'>

print(tt.__class__)
# <class '__main__.Turtle'>

print(tt.__class__.__name__)
# Turtle

tt.climb()
# 我正在很努力的向前爬...

tt.run()
# 我正在飞快的向前跑...

tt.bite()
# 咬死你咬死你!!

# Python类也是对象。它们是type的实例
print(type(Turtle))
# <class 'type'>

继承:子类自动共享父类之间数据和方法的机制
多态:不同对象对同一方法响应不同的行动,如:

class Animal:
    def run(self):
        raise AttributeError('子类必须实现这个方法')


class People(Animal):
    def run(self):
        print('人正在走')


class Pig(Animal):
    def run(self):
        print('pig is walking')


class Dog(Animal):
    def run(self):
        print('dog is running')


def func(animal):
    animal.run()


func(Pig())
# pig is walking
  1. self 是什么?
    Python 的 self 相当于 C++ 的 this 指针。
class Test:
    def prt(self):
        print(self)
        print(self.__class__)


t = Test()
t.prt()
# <__main__.Test object at 0x000000BC5A351208>
# <class '__main__.Test'>

类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self。在调用方法时,我们无需明确提供与参数 self 相对应的参数。如:

class Ball:
    def setName(self, name):
        self.name = name

    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)


a = Ball()
a.setName("球A")
b = Ball()
b.setName("球B")
c = Ball()
c.setName("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

__class__是类的一个内置属性,表示类的类型,返回<type ‘type’> ;
也是类的实例的属性,表示实例对象的类。

  1. Python 的魔法方法
    据说,Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切…
    它们是可以给你的类增加魔力的特殊方法…
    如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…
    类有一个名为__init__(self[, param1, param2…])的魔法方法,该方法在类实例化时会自动调用。如:
class Ball:
    def __init__(self, name):
        self.name = name

    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)


a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...
  1. 公有和私有
    在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。

类的私有属性实例:

class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0  # 公开变量

    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print(self.__secretCount)


counter = JustCounter()
counter.count()  # 1
counter.count()  # 2
print(counter.publicCount)  # 2

print(counter._JustCounter__secretCount)  # 2 Python的私有为伪私有
print(counter.__secretCount)  
# AttributeError: 'JustCounter' object has no attribute '__secretCount'

类的私有方法实例:

class Site:
    def __init__(self, name, url):
        self.name = name  # public
        self.__url = url  # private

    def who(self):
        print('name  : ', self.name)
        print('url : ', self.__url)

    def __foo(self):  # 私有方法
        print('这是私有方法')

    def foo(self):  # 公共方法
        print('这是公共方法')
        self.__foo()


x = Site('老马的程序人生', 'https://blog.csdn.net/LSGO_MYP')
x.who()
# name  :  老马的程序人生
# url :  https://blog.csdn.net/LSGO_MYP

x.foo()
# 这是公共方法
# 这是私有方法

x.__foo()
# AttributeError: 'Site' object has no attribute '__foo'
  1. 继承
    Python 同样支持类的继承,派生类的定义如下所示:
class DerivedClassName(BaseClassName):
    <statement-1>
    .
    .
    .
    <statement-N>

BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:

class DerivedClassName(modname.BaseClassName):
    <statement-1>
    .
    .
    .
    <statement-N>

如果子类中定义与父类同名的方法或属性,则会自动覆盖父类对应的方法或属性:

# 类定义
class people:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0

    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w

    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))


# 单继承示例
class student(people):
    grade = ''

    def __init__(self, n, a, w, g):
        # 调用父类的构函
        people.__init__(self, n, a, w)
        self.grade = g

    # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))


s = student('小马的程序人生', 10, 60, 3)
s.speak()
# 小马的程序人生 说: 我 10 岁了,我在读 3 年级

注意:如果上面的程序去掉:people.init(self, n, a, w),则输出: 说: 我 0 岁了,我在读 3 年级,因为子类的构造方法把父类的构造方法覆盖了。

例:

import random

class Fish:
    def __init__(self):
        self.x = random.randint(0, 10)
        self.y = random.randint(0, 10)

    def move(self):
        self.x -= 1
        print("我的位置", self.x, self.y)


class GoldFish(Fish):  # 金鱼
    pass


class Carp(Fish):  # 鲤鱼
    pass


class Salmon(Fish):  # 三文鱼
    pass


class Shark(Fish):  # 鲨鱼
    def __init__(self):
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True
g = GoldFish()
g.move()  # 我的位置 9 4
s = Shark()
s.eat() # 吃货的梦想就是天天有得吃!
s.move()  
# AttributeError: 'Shark' object has no attribute 'x'

解决该问题可用以下两种方式:
调用未绑定的父类方法Fish.init(self):

class Shark(Fish):  # 鲨鱼
    def __init__(self):
        Fish.__init__(self)
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True

使用super函数super().init():

class Shark(Fish):  # 鲨鱼
    def __init__(self):
        super().__init__()
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True

Python 虽然支持多继承的形式,但我们一般不使用多继承,因为容易引起混乱。

class DerivedClassName(Base1, Base2, Base3):
    <statement-1>
    .
    .
    .
    <statement-N>

需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。

# 类定义
class People:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0

    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w

    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))


# 单继承示例
class Student(People):
    grade = ''

    def __init__(self, n, a, w, g):
        # 调用父类的构函
        People.__init__(self, n, a, w)
        self.grade = g

    # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))


# 另一个类,多重继承之前的准备
class Speaker:
    topic = ''
    name = ''

    def __init__(self, n, t):
        self.name = n
        self.topic = t

    def speak(self):
        print("我叫 %s,我是一个演说家,我演讲的主题是 %s" % (self.name, self.topic))


# 多重继承
class Sample01(Speaker, Student):
    a = ''

    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)

# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample01("Tim", 25, 80, 4, "Python")
test.speak()  
# 我叫 Tim,我是一个演说家,我演讲的主题是 Python

class Sample02(Student, Speaker):
    a = ''

    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)

# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample02("Tim", 25, 80, 4, "Python")
test.speak()  
# Tim 说: 我 25 岁了,我在读 4 年级
  1. 组合
class Turtle:
    def __init__(self, x):
        self.num = x


class Fish:
    def __init__(self, x):
        self.num = x


class Pool:
    def __init__(self, x, y):
        self.turtle = Turtle(x)
        self.fish = Fish(y)

    def print_num(self):
        print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))


p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条
  1. 类、类对象和实例对象
    类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。
    实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
# 实例化对象 a、b、c都属于实例对象。
a = A()
b = A()
c = A()

类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self是谁调用,它的值就属于该对象。

类属性和实例属性区别
类属性:
类外面,可以通过实例对象.类属性和类名.类属性进行调用。类里面,通过self.类属性和类名.类属性进行调用。
实例属性 :类外面,可以通过实例对象.实例属性调用。类里面,通过self.实例属性调用。
实例属性就相当于局部变量。出了这个类或者这个类的实例对象,就没有作用了。
类属性就相当于类里面的全局变量,可以和这个类的所有实例对象共享。

# 创建类对象
class Test(object):
    class_attr = 100  # 类属性

    def __init__(self):
        self.sl_attr = 100  # 实例属性

    def func(self):
        print('类对象.类属性的值:', Test.class_attr)  # 调用类属性
        print('self.类属性的值', self.class_attr)  # 相当于把类属性 变成实例属性
        print('self.实例属性的值', self.sl_attr)  # 调用实例属性


a = Test()
a.func()

# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

b = Test()
b.func()

# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

a.class_attr = 200
a.sl_attr = 200
a.func()

# 类对象.类属性的值: 100
# self.类属性的值 200
# self.实例属性的值 200

b.func()

# 类对象.类属性的值: 100
# self.类属性的值 100
# self.实例属性的值 100

Test.class_attr = 300
a.func()

# 类对象.类属性的值: 300
# self.类属性的值 200
# self.实例属性的值 200

b.func()
# 类对象.类属性的值: 300
# self.类属性的值 300
# self.实例属性的值 100

注意:属性与方法名相同,属性会覆盖方法:

class A:
    def x(self):
        print('x_man')


aa = A()
aa.x()  # x_man
aa.x = 1
print(aa.x)  # 1
aa.x()
# TypeError: 'int' object is not callable
  1. 什么是绑定?
    Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。Python 对象的数据属性通常存储在名为.__ dict__的字典中,我们可以直接访问__dict__,或利用 Python 的内置函数vars()获取.__ dict__。
class CC:
    def setXY(self, x, y):
        self.x = x
        self.y = y

    def printXY(self):
        print(self.x, self.y)


dd = CC()
print(dd.__dict__)
# {}

print(vars(dd))
# {}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000C3473DA048>, 'printXY': <function CC.printXY at 0x000000C3473C4F28>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}

print(vars(CC))
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}
  1. 一些相关的内置函数(BIF)
    issubclass(class, classinfo) 方法用于判断参数 class 是否是类型参数 classinfo 的子类。一个类被认为是其自身的子类。classinfo可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True。
class A:
    pass


class B(A):
    pass


print(issubclass(B, A))  # True
print(issubclass(B, B))  # True
print(issubclass(A, B))  # False
print(issubclass(B, object))  # True

isinstance(object, classinfo) 方法用于判断一个对象是否是一个已知的类型,类似type()。type()不会认为子类是一种父类类型,不考虑继承关系。isinstance()会认为子类是一种父类类型,考虑继承关系。如果第一个参数不是对象,则永远返回False。如果第二个参数不是类或者由类对象组成的元组,会抛出一个TypeError异常。

a = 2
print(isinstance(a, int))  # True
print(isinstance(a, str))  # False
print(isinstance(a, (str, int, list)))  # True


class A:
    pass


class B(A):
    pass


print(isinstance(A(), A))  # True
print(type(A()) == A)  # True
print(isinstance(B(), A))  # True
print(type(B()) == A)  # False

hasattr(object, name)用于判断对象是否包含对应的属性。

class Coordinate:
    x = 10
    y = -5
    z = 0


point1 = Coordinate()
print(hasattr(point1, 'x'))  # True
print(hasattr(point1, 'y'))  # True
print(hasattr(point1, 'z'))  # True
print(hasattr(point1, 'no'))  # False

getattr(object, name[, default])用于返回一个对象属性值。

class A(object):
    bar = 1


a = A()
print(getattr(a, 'bar'))  # 1
print(getattr(a, 'bar2', 3))  # 3
print(getattr(a, 'bar2'))
# AttributeError: 'A' object has no attribute 'bar2'

setattr(object, name, value)对应函数 getattr(),用于设置属性值,该属性不一定是存在的。

class A(object):
    bar = 1


a = A()
print(getattr(a, 'bar'))  # 1
setattr(a, 'bar', 5)
print(a.bar)  # 5
setattr(a, "age", 28)
print(a.age)  # 28

delattr(object, name)用于删除属性:

class Coordinate:
    x = 10
    y = -5
    z = 0


point1 = Coordinate()

print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5
print('z = ', point1.z)  # z =  0

delattr(Coordinate, 'z')

print('--删除 z 属性后--')  # --删除 z 属性后--
print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5

# 触发错误
print('z = ', point1.z)
# AttributeError: 'Coordinate' object has no attribute 'z'

class property([fget[, fset[, fdel[, doc]]]])用于在新式类中返回属性值。
fget – 获取属性值的函数
fset – 设置属性值的函数
fdel – 删除属性值函数
doc – 属性描述信息

class C(object):
    def __init__(self):
        self.__x = None

    def getx(self):
        return self.__x

    def setx(self, value):
        self.__x = value

    def delx(self):
        del self.__x

    x = property(getx, setx, delx, "I'm the 'x' property.")


cc = C()
cc.x = 2
print(cc.x)  # 2

del cc.x
print(cc.x)
# AttributeError: 'C' object has no attribute '_C__x'

练习题
1、答案: num和count是类属性(静态变量),x和y是实例属性。大多数情况下,应该考虑使用实例属性,而不是类属性(类属性通常用来跟踪与类相关的值)。
2、函数名前加上“__”两个下划线,那么这个函数就会成为私有的了。
3、定义函数时应有self参数;实例化类时应在类的外部进行
参考: 首先要明白类、类对象、实例对象是三个不同的名词,我们常常说的类指的是类定义。一个类可以
实例化出无数的对象(实例对象),Python为了区分是哪个对象调用了方法,于是要求方法必须绑定(通
过self参数)才能调用。实例化的类对象直接调用方法,会将c对象作为第一个参数传入,因为多了self参
数,所以就会报错。

class ticket:
    def __init__(self,x,y):
        self.man = x
        self.child = y
    def notSunday(self):
        z = (self.man * 100) + (self.child * 50)
        print(z)
    def Sunday(self):
        z = (self.man * 120) + (self.child * 60)
        print(z)
c = ticket(2,1)
c.notSunday()

二、魔法方法
魔法方法总是被双下划线包围,例如__init__。
魔法方法是面向对象的 Python 的一切
魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。
cls:代表一个类的名称
self:代表一个实例对象的名称

1、 基本的魔法方法
init(self[, …]) 构造器,当一个实例被创建的时候调用的初始化方法。
new(cls[, …]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__。new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__initnew__对当前类进行了实例化,并将实例返回,传给__init__的self。但是,执行了__new,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(cls, *args, **kwargs)


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.B'>
# into B __init__

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(A, *args, **kwargs)  # 改动了cls变为A


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.A'>

若__new__没有正确返回当前类cls的实例,那__init__是不会被调用的,即使是父类的实例也不行,将没有__init__被调用。

利用__new__实现单例模式:

class Earth:
    pass


a = Earth()
print(id(a))  # 260728291456
b = Earth()
print(id(b))  # 260728291624

class Earth:
    __instance = None  # 定义一个类属性做判断

    def __new__(cls):
        if cls.__instance is None:
            cls.__instance = object.__new__(cls)
            return cls.__instance
        else:
            return cls.__instance


a = Earth()
print(id(a))  # 512320401648
b = Earth()
print(id(b))  # 512320401648

__new__方法主要是当你继承一些不可变的 class 时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。如:

class CapStr(str):
    def __new__(cls, string):
        string = string.upper()
        return str.__new__(cls, string)


a = CapStr("i love lsgogroup")
print(a)  # I LOVE LSGOGROUP

del(self) 析构器,当一个对象将要被系统回收之时调用的方法。
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。如:

class C(object):
    def __init__(self):
        print('into C __init__')

    def __del__(self):
        print('into C __del__')


c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__

str(self):当你打印一个对象的时候,触发__str__
当你使用%s格式化的时候,触发__str__
str强转数据类型的时候,触发__str__
repr(self):
repr是str的备胎
有__str__的时候执行__str__,没有实现__str__的时候,执行__repr_
repr(obj)内置函数对应的结果是__repr__的返回值
当你使用%r格式化的时候 触发__repr
_

class Cat:
    """定义一个猫类"""

    def __init__(self, new_name, new_age):
   """在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""
        self.name = new_name
        self.age = new_age

    def __str__(self):
        """返回一个对象的描述信息"""
        return "名字是:%s , 年龄是:%d" % (self.name, self.age)
        
    def __repr__(self):
        """返回一个对象的描述信息"""
        return "Cat:(%s,%d)" % (self.name, self.age)

    def eat(self):
        print("%s在吃鱼...." % self.name)

    def drink(self):
        print("%s在喝可乐..." % self.name)

    def introduce(self):
        print("名字是:%s, 年龄是:%d" % (self.name, self.age))


# 创建了一个对象
tom = Cat("汤姆", 30)
print(tom)  # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom))  # Cat:(汤姆,30)
tom.eat()  # 汤姆在吃鱼....
tom.introduce()  # 名字是:汤姆, 年龄是:30

str(self) 的返回结果可读性强。也就是说,str 的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。repr(self) 的返回结果应更准确。怎么说,repr 存在的目的在于调试,便于开发者使用。

import datetime

today = datetime.date.today()
print(str(today))  # 2019-10-11
print(repr(today))  # datetime.date(2019, 10, 11)
print('%s' %today)  # 2019-10-11
print('%r' %today)  # datetime.date(2019, 10, 11)

2、算数运算符
类型工厂函数,指的是“不通过类而是通过函数来创建对象”。如:

class C:
    pass


print(type(len))  # <class 'builtin_function_or_method'>
print(type(dir))  # <class 'builtin_function_or_method'>
print(type(int))  # <class 'type'>
print(type(list))  # <class 'type'>
print(type(tuple))  # <class 'type'>
print(type(C))  # <class 'type'>
print(int('123'))  # 123

# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3)))  # [1, 2, 3]

add(self, other)定义加法的行为:+
sub(self, other)定义减法的行为:-
如:

class MyClass:

    def __init__(self, height, weight):
        self.height = height
        self.weight = weight

    # 两个对象的长相加,宽不变.返回一个新的类
    def __add__(self, others):
        return MyClass(self.height + others.height, self.weight + others.weight)

    # 两个对象的宽相减,长不变.返回一个新的类
    def __sub__(self, others):
        return MyClass(self.height - others.height, self.weight - others.weight)

    # 说一下自己的参数
    def intro(self):
        print("高为", self.height, " 重为", self.weight)


def main():
    a = MyClass(height=10, weight=5)
    a.intro()

    b = MyClass(height=20, weight=10)
    b.intro()

    c = b - a
    c.intro()

    d = a + b
    d.intro()


if __name__ == '__main__':
    main()

# 高为 10  重为 5
# 高为 20  重为 10
# 高为 10  重为 5
# 高为 30  重为 15

mul(self, other)定义乘法的行为:*
truediv(self, other)定义真除法的行为:/
floordiv(self, other)定义整数除法的行为://
mod(self, other) 定义取模算法的行为%
divmod(self, other)定义当被 divmod() 调用时的行为divmod(a, b)把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)。
pow(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
lshift(self, other)定义按位左移位的行为<<
rshift(self, other)定义按位右移位的行为:>>
and(self, other)定义按位与操作的行为:&
xor(self, other)定义按位异或操作的行为:^
or(self, other)定义按位或操作的行为:|

3、反算术运算符
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。
radd(self, other)定义加法的行为:+
rsub(self, other)定义减法的行为:-
rmul(self, other)定义乘法的行为:*
rtruediv(self, other)定义真除法的为:/
rfloordiv(self, other)定义整数除法的为://
rmod(self, other) 定义取模算法的行为:%
rdivmod(self, other)定义当被 divmod() 调用时的行为__rpow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
rlshift(self, other)定义按位左移位的行为<<
rrshift(self, other)定义按位右移位的行为:>>
rand(self, other)定义按位与操作的行为:&
rxor(self, other)定义按位异或操作的行为:^
ror(self, other)定义按位或操作的行为:|

如:a + b , 这里加数是a,被加数是b,因此是a主动,反运算就是如果a对象的__add__()方法没有实现或者不支持相应的操作,那么 Python 就会调用b的__radd__()方法。如:

class Nint(int):
    def __radd__(self, other):
        return int.__sub__(other, self) # 注意 self 在后面


a = Nint(5)
b = Nint(3)
print(a + b)  # 8
print(1 + b)  # -2

4、增量赋值运算符
iadd(self, other)定义赋值加法的行为:+=
isub(self, other)定义赋值减法的行为:-=
imul(self, other)定义赋值乘法的行为:*=
itruediv(self, other)定义赋值真除法的行为:/=
ifloordiv(self, other)定义赋值整数除法的行为://=
imod(self, other)定义赋值取模算法的行为:%=
ipow(self, other[, modulo])定义赋值幂运算的行为:**=
ilshift(self, other)定义赋值按位左移位的行为:<<=
irshift(self, other)定义赋值按位右移位的行为:>>=
iand(self, other)定义赋值按位与操作的行为:&=
ixor(self, other)定义赋值按位异或操作的行为:^=
ior(self, other)定义赋值按位或操作的行为:|=

5、一元运算符__neg__(self)定义正号的行为:+x__pos__(self)定义负号的行为:-x__abs__(self)定义当被abs()调用时的行为__invert__(self)定义按位求反的行为:~x

6、属性访问
getattr(self, name): 定义当用户试图获取一个不存在的属性时的行为。
getattribute(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
setattr(self, name, value):定义当一个属性被设置时的行为。
delattr(self, name):定义当一个属性被删除时的行为。

class C:
    def __getattribute__(self, item):
        print('__getattribute__')
        return super().__getattribute__(item)

    def __getattr__(self, item):
        print('__getattr__')

    def __setattr__(self, key, value):
        print('__setattr__')
        super().__setattr__(key, value)

    def __delattr__(self, item):
        print('__delattr__')
        super().__delattr__(item)


c = C()
c.x
# __getattribute__
# __getattr__

c.x = 1
# __setattr__

del c.x
# __delattr__

7、 描述符
描述符就是将某种特殊类型的类的实例指派给另一个类的属性。get(self, instance, owner)用于访问属性,它返回属性的值。
set(self, instance, value)将在属性分配操作中调用,不返回任何内容。
del(self, instance)控制删除操作,不返回任何内容。

8、定制序列
协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。
容器类型的协议如果说你希望定制的容器是不可变的话,你只需要定义__len__()和__getitem__()方法。如果你希望定制的容器是可变的话,除了__len__()和__getitem__()方法,你还需要定义__setitem__()和__delitem__()两个方法。如:编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数:

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {
    
    }.fromkeys(range(len(self.values)), 0)

    def __len__(self):
        return len(self.values)

    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]


c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # 7

print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}

print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}

len(self)定义当被len()调用时的行为(返回容器中元素的个数)。
getitem(self, key)定义获取容器中元素的行为,相当于self[key]。
setitem(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value。
delitem(self, key)定义删除容器中指定元素的行为,相当于del self[key]。
编写一个可改变的自定义列表,要求记录列表中每个元素被访问的次数:

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {
    
    }.fromkeys(range(len(self.values)), 0)

    def __len__(self):
        return len(self.values)

    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]

    def __setitem__(self, key, value):
        self.values[key] = value

    def __delitem__(self, key):
        del self.values[key]
        for i in range(0, len(self.values)):
            if i >= key:
                self.count[i] = self.count[i + 1]
        self.count.pop(len(self.values))


c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
c2[2] = 12
print(c1[1] + c2[2])  # 15
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
print(c1.count)
# {0: 0, 1: 0, 2: 0, 3: 0}

9、 迭代器
迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。字符串,列表或元组对象都可用于创建迭代器:

links = {
    
    'B': '百度', 'A': '阿里', 'T': '腾讯'}
for each in links:
    print('%s -> %s' % (each, links[each]))
    
'''
B -> 百度
A -> 阿里
T -> 腾讯
'''

迭代器有两个基本的方法:iter() 和 next()。
iter(object) 函数用来生成迭代器。
next(iterator[, default]) 返回迭代器的下一个项目。
iterator – 可迭代对象
default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

links = {
    
    'B': '百度', 'A': '阿里', 'T': '腾讯'}
it = iter(links)
print(next(it))  # B
print(next(it))  # A
print(next(it))  # T
print(next(it))  # StopIteration


it = iter(links)
while True:
    try:
        each = next(it)
    except StopIteration:
        break
    print(each)

# B
# A
# T

把一个类作为一个迭代器使用需要在类中实现两个魔法方法 iter() 与 next() 。iter(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。next() 返回下一个迭代器对象。StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

class Fibs:
    def __init__(self, n=10):
        self.a = 0
        self.b = 1
        self.n = n

    def __iter__(self):
        return self

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b
        if self.a > self.n:
            raise StopIteration
        return self.a


fibs = Fibs(100)
for each in fibs:
    print(each, end=' ')

# 1 1 2 3 5 8 13 21 34 55 89

10、生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。调用一个生成器函数,返回的是一个迭代器对象。

def myGen():
    print('生成器执行!')
    yield 1
    yield 2


myG = myGen()
print(next(myG))  
# 生成器执行!
# 1

print(next(myG))  # 2
print(next(myG))  # StopIteration

myG = myGen()
for each in myG:
    print(each)

'''
生成器执行!
1
2
'''

练习题:
1、
(1)newnew(cls[, …]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__。new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__initnew__对当前类进行了实例化,并将实例返回,传给__init__的self。但是,执行了__new,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。

(2)initinit(self[, …]) 构造器,当一个实例被创建的时候调用的初始化方法,主要用于赋初值。

(3)str:当你打印一个对象的时候,触发__str__;当你使用%s格式化的时候,触发__str__;str强转数据类型的时候,触发__str__。

(4)rstr:repr是str的备胎;有__str__的时候执行__str__,没有实现__str__的时候,执行__repr__;repr(obj)内置函数对应的结果是__repr__的返回值;当你使用%r格式化的时候 触发__repr__

(5)getitemgetitem(self, key)定义获取容器中元素的行为,相当于self[key]。

(6)setitemsetitem(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value。

2、
https://mp.weixin.qq.com/s?__biz=MzIyNDA1NjA1NQ==&mid=2651011380&idx=1&sn=e2fb4ad1b9734e8f104c267d4cd36b33&chksm=f3e35eacc494d7ba417701f2f9b6bd2133e921bef5ed3b798a6aa87d35919dfdd26156491e83&token=523711417&lang=zh_CN#rd

猜你喜欢

转载自blog.csdn.net/m0_45672993/article/details/107798672
8.4