webrtc 语音处理模块逐文档注释---APM类的接口文件audio_processing.h

modules/audio_processing/include/audio_processing.h

webrtc 语音处理模块调用接口定义在上述文件之中。

在文件的一开始,看到了一些类的声明,这些类的具体定义放在了文件的后面。通常来说这些类可以单独实例出来实现对应功能,然而这个文件的主要类接口还是apm类,通过apm类调用以下类来实现audio processing的任务。

struct AecCore;

class AudioFrame;

template<typename T>
class Beamformer;

class StreamConfig;
class ProcessingConfig;

class EchoCancellation;
class EchoControlMobile;
class GainControl;
class HighPassFilter;
class LevelEstimator;
class NoiseSuppression;
class VoiceDetection;

再往后找,定义APM类,apm类是整个语音处理过程的主入口,通常来讲语音处理从这个类的实例开始。

从类的构造上来看,这个类是一个纯虚类,里面所有的成员方法都是虚函数,想来应该是实现解耦的一种模式,用这个纯虚类作为一个接口,从而实现外部调用与内部实现的一种解耦。

在注释中,webrtc给出了apm的使用范例:

1】调用creat()函数创建apm实例: AudioProcessing* apm = AudioProcessing::Create(0);

2】跟着是各个apm各个功能模块的使能以及设置:

// AudioProcessing* apm = AudioProcessing::Create(0);
//
// apm->high_pass_filter()->Enable(true);
//
// apm->echo_cancellation()->enable_drift_compensation(false);
// apm->echo_cancellation()->Enable(true);
//
// apm->noise_reduction()->set_level(kHighSuppression);
// apm->noise_reduction()->Enable(true);
//
// apm->gain_control()->set_analog_level_limits(0, 255);
// apm->gain_control()->set_mode(kAdaptiveAnalog);
// apm->gain_control()->Enable(true);
//
// apm->voice_detection()->Enable(true);

3】最后给出了各个场景下的apm使用方法

// // Start a voice call...
//
// // ... Render frame arrives bound for the audio HAL ...
// apm->ProcessReverseStream(render_frame);
//
// // ... Capture frame arrives from the audio HAL ...
// // Call required set_stream_ functions.
// apm->set_stream_delay_ms(delay_ms);
// apm->gain_control()->set_stream_analog_level(analog_level);
//
// apm->ProcessStream(capture_frame);
//
// // Call required stream_ functions.
// analog_level = apm->gain_control()->stream_analog_level();
// has_voice = apm->stream_has_voice();
//
// // Repeate render and capture processing for the duration of the call...
// // Start a new call...
// apm->Initialize();
//
// // Close the application...
// delete apm;
// The Audio Processing Module (APM) provides a collection of voice processing
// components designed for real-time communications software.
//
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
// primary stream, on which all processing is applied, are passed to
// |ProcessStream()|. Frames of the reverse direction stream are passed to
// |ProcessReverseStream()|. On the client-side, this will typically be the
// near-end (capture) and far-end (render) streams, respectively. APM should be
// placed in the signal chain as close to the audio hardware abstraction layer
// (HAL) as possible.
//
// On the server-side, the reverse stream will normally not be used, with
// processing occurring on each incoming stream.
//
// Component interfaces follow a similar pattern and are accessed through
// corresponding getters in APM. All components are disabled at create-time,
// with default settings that are recommended for most situations. New settings
// can be applied without enabling a component. Enabling a component triggers
// memory allocation and initialization to allow it to start processing the
// streams.
//
// Thread safety is provided with the following assumptions to reduce locking
// overhead:
//   1. The stream getters and setters are called from the same thread as
//      ProcessStream(). More precisely, stream functions are never called
//      concurrently with ProcessStream().
//   2. Parameter getters are never called concurrently with the corresponding
//      setter.
//
// APM accepts only linear PCM audio data in chunks of 10 ms. The int16
// interfaces use interleaved data, while the float interfaces use deinterleaved
// data.
//
class AudioProcessing {
 public:
  // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone.
  enum ChannelLayout {
    kMono,
    // Left, right.
    kStereo,
    // Mono, keyboard mic.
    kMonoAndKeyboard,
    // Left, right, keyboard mic.
    kStereoAndKeyboard
  };

  // Creates an APM instance. Use one instance for every primary audio stream
  // requiring processing. On the client-side, this would typically be one
  // instance for the near-end stream, and additional instances for each far-end
  // stream which requires processing. On the server-side, this would typically
  // be one instance for every incoming stream.
  static AudioProcessing* Create();
  // Allows passing in an optional configuration at create-time.
  static AudioProcessing* Create(const Config& config);
  // Only for testing.
  static AudioProcessing* Create(const Config& config,
                                 Beamformer<float>* beamformer);
  virtual ~AudioProcessing() {}

  // Initializes internal states, while retaining all user settings. This
  // should be called before beginning to process a new audio stream. However,
  // it is not necessary to call before processing the first stream after
  // creation.
  //
  // It is also not necessary to call if the audio parameters (sample
  // rate and number of channels) have changed. Passing updated parameters
  // directly to |ProcessStream()| and |ProcessReverseStream()| is permissible.
  // If the parameters are known at init-time though, they may be provided.
  virtual int Initialize() = 0;

  // The int16 interfaces require:
  //   - only |NativeRate|s be used
  //   - that the input, output and reverse rates must match
  //   - that |processing_config.output_stream()| matches
  //     |processing_config.input_stream()|.
  //
  // The float interfaces accept arbitrary rates and support differing input and
  // output layouts, but the output must have either one channel or the same
  // number of channels as the input.
  virtual int Initialize(const ProcessingConfig& processing_config) = 0;

  // Initialize with unpacked parameters. See Initialize() above for details.
  //
  // TODO(mgraczyk): Remove once clients are updated to use the new interface.
  virtual int Initialize(int input_sample_rate_hz,
                         int output_sample_rate_hz,
                         int reverse_sample_rate_hz,
                         ChannelLayout input_layout,
                         ChannelLayout output_layout,
                         ChannelLayout reverse_layout) = 0;

  // Pass down additional options which don't have explicit setters. This
  // ensures the options are applied immediately.
  virtual void SetExtraOptions(const Config& config) = 0;

  // TODO(ajm): Only intended for internal use. Make private and friend the
  // necessary classes?
  virtual int proc_sample_rate_hz() const = 0;
  virtual int proc_split_sample_rate_hz() const = 0;
  virtual size_t num_input_channels() const = 0;
  virtual size_t num_proc_channels() const = 0;
  virtual size_t num_output_channels() const = 0;
  virtual size_t num_reverse_channels() const = 0;

  // Set to true when the output of AudioProcessing will be muted or in some
  // other way not used. Ideally, the captured audio would still be processed,
  // but some components may change behavior based on this information.
  // Default false.
  virtual void set_output_will_be_muted(bool muted) = 0;

  // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
  // this is the near-end (or captured) audio.
  //
  // If needed for enabled functionality, any function with the set_stream_ tag
  // must be called prior to processing the current frame. Any getter function
  // with the stream_ tag which is needed should be called after processing.
  //
  // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
  // members of |frame| must be valid. If changed from the previous call to this
  // method, it will trigger an initialization.
  virtual int ProcessStream(AudioFrame* frame) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element
  // of |src| points to a channel buffer, arranged according to
  // |input_layout|. At output, the channels will be arranged according to
  // |output_layout| at |output_sample_rate_hz| in |dest|.
  //
  // The output layout must have one channel or as many channels as the input.
  // |src| and |dest| may use the same memory, if desired.
  //
  // TODO(mgraczyk): Remove once clients are updated to use the new interface.
  virtual int ProcessStream(const float* const* src,
                            size_t samples_per_channel,
                            int input_sample_rate_hz,
                            ChannelLayout input_layout,
                            int output_sample_rate_hz,
                            ChannelLayout output_layout,
                            float* const* dest) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // |src| points to a channel buffer, arranged according to |input_stream|. At
  // output, the channels will be arranged according to |output_stream| in
  // |dest|.
  //
  // The output must have one channel or as many channels as the input. |src|
  // and |dest| may use the same memory, if desired.
  virtual int ProcessStream(const float* const* src,
                            const StreamConfig& input_config,
                            const StreamConfig& output_config,
                            float* const* dest) = 0;

  // Processes a 10 ms |frame| of the reverse direction audio stream. The frame
  // may be modified. On the client-side, this is the far-end (or to be
  // rendered) audio.
  //
  // It is necessary to provide this if echo processing is enabled, as the
  // reverse stream forms the echo reference signal. It is recommended, but not
  // necessary, to provide if gain control is enabled. On the server-side this
  // typically will not be used. If you're not sure what to pass in here,
  // chances are you don't need to use it.
  //
  // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
  // members of |frame| must be valid.
  virtual int ProcessReverseStream(AudioFrame* frame) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element
  // of |data| points to a channel buffer, arranged according to |layout|.
  // TODO(mgraczyk): Remove once clients are updated to use the new interface.
  virtual int AnalyzeReverseStream(const float* const* data,
                                   size_t samples_per_channel,
                                   int rev_sample_rate_hz,
                                   ChannelLayout layout) = 0;

  // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
  // |data| points to a channel buffer, arranged according to |reverse_config|.
  virtual int ProcessReverseStream(const float* const* src,
                                   const StreamConfig& reverse_input_config,
                                   const StreamConfig& reverse_output_config,
                                   float* const* dest) = 0;

  // This must be called if and only if echo processing is enabled.
  //
  // Sets the |delay| in ms between ProcessReverseStream() receiving a far-end
  // frame and ProcessStream() receiving a near-end frame containing the
  // corresponding echo. On the client-side this can be expressed as
  //   delay = (t_render - t_analyze) + (t_process - t_capture)
  // where,
  //   - t_analyze is the time a frame is passed to ProcessReverseStream() and
  //     t_render is the time the first sample of the same frame is rendered by
  //     the audio hardware.
  //   - t_capture is the time the first sample of a frame is captured by the
  //     audio hardware and t_pull is the time the same frame is passed to
  //     ProcessStream().
  virtual int set_stream_delay_ms(int delay) = 0;
  virtual int stream_delay_ms() const = 0;
  virtual bool was_stream_delay_set() const = 0;

  // Call to signal that a key press occurred (true) or did not occur (false)
  // with this chunk of audio.
  virtual void set_stream_key_pressed(bool key_pressed) = 0;

  // Sets a delay |offset| in ms to add to the values passed in through
  // set_stream_delay_ms(). May be positive or negative.
  //
  // Note that this could cause an otherwise valid value passed to
  // set_stream_delay_ms() to return an error.
  virtual void set_delay_offset_ms(int offset) = 0;
  virtual int delay_offset_ms() const = 0;

  // Starts recording debugging information to a file specified by |filename|,
  // a NULL-terminated string. If there is an ongoing recording, the old file
  // will be closed, and recording will continue in the newly specified file.
  // An already existing file will be overwritten without warning. A maximum
  // file size (in bytes) for the log can be specified. The logging is stopped
  // once the limit has been reached. If max_log_size_bytes is set to a value
  // <= 0, no limit will be used.
  static const size_t kMaxFilenameSize = 1024;
  virtual int StartDebugRecording(const char filename[kMaxFilenameSize],
                                  int64_t max_log_size_bytes) = 0;

  // Same as above but uses an existing file handle. Takes ownership
  // of |handle| and closes it at StopDebugRecording().
  virtual int StartDebugRecording(FILE* handle, int64_t max_log_size_bytes) = 0;

  // TODO(ivoc): Remove this function after Chrome stops using it.
  int StartDebugRecording(FILE* handle) {
    return StartDebugRecording(handle, -1);
  }

  // Same as above but uses an existing PlatformFile handle. Takes ownership
  // of |handle| and closes it at StopDebugRecording().
  // TODO(xians): Make this interface pure virtual.
  virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) {
      return -1;
  }

  // Stops recording debugging information, and closes the file. Recording
  // cannot be resumed in the same file (without overwriting it).
  virtual int StopDebugRecording() = 0;

  // Use to send UMA histograms at end of a call. Note that all histogram
  // specific member variables are reset.
  virtual void UpdateHistogramsOnCallEnd() = 0;

  // These provide access to the component interfaces and should never return
  // NULL. The pointers will be valid for the lifetime of the APM instance.
  // The memory for these objects is entirely managed internally.
  virtual EchoCancellation* echo_cancellation() const = 0;
  virtual EchoControlMobile* echo_control_mobile() const = 0;
  virtual GainControl* gain_control() const = 0;
  virtual HighPassFilter* high_pass_filter() const = 0;
  virtual LevelEstimator* level_estimator() const = 0;
  virtual NoiseSuppression* noise_suppression() const = 0;
  virtual VoiceDetection* voice_detection() const = 0;

  struct Statistic {
    int instant;  // Instantaneous value.
    int average;  // Long-term average.
    int maximum;  // Long-term maximum.
    int minimum;  // Long-term minimum.
  };

  enum Error {
    // Fatal errors.
    kNoError = 0,
    kUnspecifiedError = -1,
    kCreationFailedError = -2,
    kUnsupportedComponentError = -3,
    kUnsupportedFunctionError = -4,
    kNullPointerError = -5,
    kBadParameterError = -6,
    kBadSampleRateError = -7,
    kBadDataLengthError = -8,
    kBadNumberChannelsError = -9,
    kFileError = -10,
    kStreamParameterNotSetError = -11,
    kNotEnabledError = -12,

    // Warnings are non-fatal.
    // This results when a set_stream_ parameter is out of range. Processing
    // will continue, but the parameter may have been truncated.
    kBadStreamParameterWarning = -13
  };

  enum NativeRate {
    kSampleRate8kHz = 8000,
    kSampleRate16kHz = 16000,
    kSampleRate32kHz = 32000,
    kSampleRate48kHz = 48000
  };

  static const int kNativeSampleRatesHz[];
  static const size_t kNumNativeSampleRates;
  static const int kMaxNativeSampleRateHz;

  static const int kChunkSizeMs = 10;
};

class StreamConfig {
 public:
  // sample_rate_hz: The sampling rate of the stream.
  //
  // num_channels: The number of audio channels in the stream, excluding the
  //               keyboard channel if it is present. When passing a
  //               StreamConfig with an array of arrays T*[N],
  //
  //                N == {num_channels + 1  if  has_keyboard
  //                     {num_channels      if  !has_keyboard
  //
  // has_keyboard: True if the stream has a keyboard channel. When has_keyboard
  //               is true, the last channel in any corresponding list of
  //               channels is the keyboard channel.
  StreamConfig(int sample_rate_hz = 0,
               size_t num_channels = 0,
               bool has_keyboard = false)
      : sample_rate_hz_(sample_rate_hz),
        num_channels_(num_channels),
        has_keyboard_(has_keyboard),
        num_frames_(calculate_frames(sample_rate_hz)) {}

  void set_sample_rate_hz(int value) {
    sample_rate_hz_ = value;
    num_frames_ = calculate_frames(value);
  }
  void set_num_channels(size_t value) { num_channels_ = value; }
  void set_has_keyboard(bool value) { has_keyboard_ = value; }

  int sample_rate_hz() const { return sample_rate_hz_; }

  // The number of channels in the stream, not including the keyboard channel if
  // present.
  size_t num_channels() const { return num_channels_; }

  bool has_keyboard() const { return has_keyboard_; }
  size_t num_frames() const { return num_frames_; }
  size_t num_samples() const { return num_channels_ * num_frames_; }

  bool operator==(const StreamConfig& other) const {
    return sample_rate_hz_ == other.sample_rate_hz_ &&
           num_channels_ == other.num_channels_ &&
           has_keyboard_ == other.has_keyboard_;
  }

  bool operator!=(const StreamConfig& other) const { return !(*this == other); }

 private:
  static size_t calculate_frames(int sample_rate_hz) {
    return static_cast<size_t>(
        AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000);
  }

  int sample_rate_hz_;
  size_t num_channels_;
  bool has_keyboard_;
  size_t num_frames_;
};

待续...

猜你喜欢

转载自blog.csdn.net/ljl86400/article/details/112131131
今日推荐