DZY Loves Math IV(杜教筛)

文章目录

title

solution

这道题是多么的妙啊,完全不是我能推出来的式子呢!
在这里插入图片描述
观察数据范围,有点奇怪欸,在暗示我??
在这里插入图片描述
考虑暴力枚举 n n n
S ( n , m ) = ∑ i = 1 m φ ( n × i ) S(n,m)=\sum_{i=1}^mφ(n\times i) S(n,m)=i=1mφ(n×i)
神奇的操作来了,将 n n n质因数分解,并把不同的质因数分别拿出一个
n = ∏ p i e i n=\prod p_i^{e_i} n=piei
q = ∏ p i q=\prod p_i q=pi
p = ∏ p i e i − 1 p=\prod p_i^{e_i-1} p=piei1
则有 p × q = n p\times q=n p×q=n

  1. i % j = 0 i\% j=0 i%j=0,则 φ ( i j ) = φ ( i ) × j φ(ij)=φ(i)\times j φ(ij)=φ(i)×j
  2. ( i , j ) = 1 (i,j)=1 (i,j)=1,则 φ ( i j ) = φ ( i ) × φ ( j ) φ(ij)=φ(i)\times φ(j) φ(ij)=φ(i)×φ(j)

S ( n , m ) = ∑ i = 1 m φ ( n × i ) S(n,m)=\sum_{i=1}^mφ(n\times i) S(n,m)=i=1mφ(n×i) = p   ⋅ ∑ i = 1 m φ ( q × i ) =p\ ·\sum_{i=1}^mφ(q\times i) =p i=1mφ(q×i) = p   ⋅ ∑ i = 1 m φ ( q g c d ( q , i ) × i × g c d ( q , i ) ) =p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)}\times i\times gcd(q,i)) =p i=1mφ(gcd(q,i)q×i×gcd(q,i)) = p   ⋅ ∑ i = 1 m φ ( q g c d ( q , i ) ) φ ( i × g c d ( q , i ) ) =p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i\times gcd(q,i)) =p i=1mφ(gcd(q,i)q)φ(i×gcd(q,i)) = p   ⋅ ∑ i = 1 m φ ( q g c d ( q , i ) ) φ ( i ) g c d ( q , i ) =p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i)gcd(q,i) =p i=1mφ(gcd(q,i)q)φ(i)gcd(q,i) = p ∑ i = 1 m φ ( q g c d ( q , i ) ) φ ( i ) ∑ d ∣ g c d ( q , i ) φ ( d ) =p\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i)\sum_{d|gcd(q,i)}φ(d) =pi=1mφ(gcd(q,i)q)φ(i)dgcd(q,i)φ(d) = p ∑ i = 1 m φ ( i ) ∑ d ∣ i , d ∣ q φ ( q d ) =p\sum_{i=1}^mφ(i)\sum_{d|i,d|q}φ(\frac{q}{d}) =pi=1mφ(i)di,dqφ(dq) = p ∑ d ∣ q φ ( q d ) ∑ i = 1 ⌊ m d ⌋ φ ( i × d ) =p\sum_{d|q}φ(\frac{q}{d})\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}φ(i\times d) =pdqφ(dq)i=1dmφ(i×d) = p ∑ d ∣ q φ ( q d ) S ( d , ⌊ m d ⌋ ) =p\sum_{d|q}φ(\frac{q}{d})S(d,\lfloor\frac{m}{d}\rfloor) =pdqφ(dq)S(d,dm)
在这里插入图片描述
φ φ φ用杜教筛,应该是老熟人了
S ( n , m ) S(n,m) S(n,m)记忆化一下,应该就没了

code

#include <cstdio>
#include <vector>
#include <map>
using namespace std;
#define mod 1000000007
#define int long long
#define maxn 200000
map < int, int > mp, s[maxn];
int cnt;
int minp[maxn + 5]; //minp[i]:i的最大质因子
int prime[maxn], phi[maxn + 5]; //phi[i]:1~i的phi的前缀和 
bool vis[maxn + 5];
 
void init() {
    
    
	phi[1] = 1;
	for( int i = 2;i <= maxn;i ++ ) {
    
    
		if( ! vis[i] ) prime[++ cnt] = i, minp[i] = i, phi[i] = i - 1;
		for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {
    
    
			vis[i * prime[j]] = 1, minp[i * prime[j]] = prime[j];
			if( i % prime[j] == 0 ) {
    
    
				phi[i * prime[j]] = phi[i] * prime[j] % mod;//与式子推导的第二步为什么p能直接从φ里面拿出来呼应
				break;
			}
			else
				phi[i * prime[j]] = phi[i] * ( prime[j] - 1 ) % mod;
		}
	}
	for( int i = 1;i <= maxn;i ++ ) phi[i] = ( phi[i] + phi[i - 1] ) % mod;
}

int Phi( int n ) {
    
    
	if( n <= maxn ) return phi[n];
	if( mp[n] ) return mp[n];
	int ans = n * ( n + 1 ) / 2 % mod;
	for( int i = 2, r;i <= n;i = r + 1 ) {
    
    
		r = n / ( n / i );
		ans = ( ans - ( r - i + 1 ) * Phi( n / i ) % mod + mod ) % mod;
	}
	return mp[n] = ans;
}

int solve( int n, int m ) {
    
    
	if( ! m ) return 0;
	if( s[n][m] ) return s[n][m];
	if( n == 1 ) return s[n][m] = Phi( m );
	if( m == 1 ) return s[n][m] = ( Phi( n ) - Phi( n - 1 ) + mod ) % mod;
	vector < int > g;
	int p = 1, q = 1, N = n, x;
	while( N > 1 ) {
    
    
		x = minp[N], q *= x, N /= x, g.push_back( x );
		while( N % x == 0 ) N /= x, p *= x;
	}
	int len = g.size(), ans = 0;
	for( int i = 0;i < ( 1 << len );i ++ ) {
    
     //枚举q的所有质因子(状压) 
		int d = 1;
		for( int j = 0;j < len;j ++ )
			if( i & ( 1 << j ) ) d = d * g[j]; //二进制位为1则有该质因子
		ans = ( ans + ( Phi( q / d ) - Phi( q / d - 1 ) + mod ) % mod * solve( d, m / d ) % mod ) % mod;
	}
	return s[n][m] = ans * p % mod;
}

signed main() {
    
    
	int n, m;
	scanf( "%lld %lld", &n, &m );
	init();
	int ans = 0;
	for( int i = 1;i <= n;i ++ ) 
		ans = ( ans + solve( i, m ) ) % mod;
	printf( "%lld\n", ans );
	return 0;
}

猜你喜欢

转载自blog.csdn.net/Emm_Titan/article/details/113619168