mcst_example.py(2021-10-02)

mcst_example.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import sys
import math
import random
import numpy as np

AVAILABLE_CHOICES = [1, -1, 2, -2]
AVAILABLE_CHOICE_NUMBER = len(AVAILABLE_CHOICES)
MAX_ROUND_NUMBER = 10


class State(object):
  """
  蒙特卡罗树搜索的游戏状态,记录在某一个Node节点下的状态数据,包含当前的游戏得分、当前的游戏round数、从开始到当前的执行记录。
  需要实现判断当前状态是否达到游戏结束状态,支持从Action集合中随机取出操作。
  """

  def __init__(self):
    self.current_value = 0.0
    # For the first root node, the index is 0 and the game should start from 1
    self.current_round_index = 0
    self.cumulative_choices = []

  def get_current_value(self):
    return self.current_value

  def set_current_value(self, value):
    self.current_value = value

  def get_current_round_index(self):
    return self.current_round_index

  def set_current_round_index(self, turn):
    self.current_round_index = turn

  def get_cumulative_choices(self):
    return self.cumulative_choices

  def set_cumulative_choices(self, choices):
    self.cumulative_choices = choices

  def is_terminal(self):
    # The round index starts from 1 to max round number
    return self.current_round_index == MAX_ROUND_NUMBER

  def compute_reward(self):
    return -abs(1 - self.current_value)

  def get_next_state_with_random_choice(self):
    random_choice = random.choice([choice for choice in AVAILABLE_CHOICES])

    next_state = State()
    next_state.set_current_value(self.current_value + random_choice)
    next_state.set_current_round_index(self.current_round_index + 1)
    next_state.set_cumulative_choices(self.cumulative_choices +
                                      [random_choice])

    return next_state

  def __repr__(self):
    return "State: {}, value: {}, round: {}, choices: {}".format(
        hash(self), self.current_value, self.current_round_index,
        self.cumulative_choices)


class Node(object):
  """
  蒙特卡罗树搜索的树结构的Node,包含了父节点和直接点等信息,还有用于计算UCB的遍历次数和quality值,还有游戏选择这个Node的State。
  """

  def __init__(self):
    self.parent = None
    self.children = []

    self.visit_times = 0
    self.quality_value = 0.0

    self.state = None

  def set_state(self, state):
    self.state = state

  def get_state(self):
    return self.state

  def get_parent(self):
    return self.parent

  def set_parent(self, parent):
    self.parent = parent

  def get_children(self):
    return self.children

  def get_visit_times(self):
    return self.visit_times

  def set_visit_times(self, times):
    self.visit_times = times

  def visit_times_add_one(self):
    self.visit_times += 1

  def get_quality_value(self):
    return self.quality_value

  def set_quality_value(self, value):
    self.quality_value = value

  def quality_value_add_n(self, n):
    self.quality_value += n

  def is_all_expand(self):
    return len(self.children) == AVAILABLE_CHOICE_NUMBER

  def add_child(self, sub_node):
    sub_node.set_parent(self)
    self.children.append(sub_node)

  def __repr__(self):
    return "Node: {}, Q/N: {}/{}, state: {}".format(
        hash(self), self.quality_value, self.visit_times, self.state)


def tree_policy(node):
  """
  蒙特卡罗树搜索的Selection和Expansion阶段,传入当前需要开始搜索的节点(例如根节点),根据exploration/exploitation算法返回最好的需要expend的节点,注意如果节点是叶子结点直接返回。
  基本策略是先找当前未选择过的子节点,如果有多个则随机选。如果都选择过就找权衡过exploration/exploitation的UCB值最大的,如果UCB值相等则随机选。
  """

  # Check if the current node is the leaf node
  while node.get_state().is_terminal() == False:

    if node.is_all_expand():
      node = best_child(node, True)
    else:
      # Return the new sub node
      sub_node = expand(node)
      return sub_node

  # Return the leaf node
  return node


def default_policy(node):
  """
  蒙特卡罗树搜索的Simulation阶段,输入一个需要expand的节点,随机操作后创建新的节点,返回新增节点的reward。注意输入的节点应该不是子节点,而且是有未执行的Action可以expend的。
  基本策略是随机选择Action。
  """

  # Get the state of the game
  current_state = node.get_state()

  # Run until the game over
  while current_state.is_terminal() == False:

    # Pick one random action to play and get next state
    current_state = current_state.get_next_state_with_random_choice()

  final_state_reward = current_state.compute_reward()
  return final_state_reward


def expand(node):
  """
  输入一个节点,在该节点上拓展一个新的节点,使用random方法执行Action,返回新增的节点。注意,需要保证新增的节点与其他节点Action不同。
  """

  tried_sub_node_states = [
      sub_node.get_state() for sub_node in node.get_children()
  ]

  new_state = node.get_state().get_next_state_with_random_choice()

  # Check until get the new state which has the different action from others
  while new_state in tried_sub_node_states:
    new_state = node.get_state().get_next_state_with_random_choice()

  sub_node = Node()
  sub_node.set_state(new_state)
  node.add_child(sub_node)

  return sub_node


def best_child(node, is_exploration):
  """
  使用UCB算法,权衡exploration和exploitation后选择得分最高的子节点,注意如果是预测阶段直接选择当前Q值得分最高的。
  """

  # TODO: Use the min float value
  best_score = -sys.maxsize
  best_sub_node = None

  # Travel all sub nodes to find the best one
  for sub_node in node.get_children():

    # Ignore exploration for inference
    if is_exploration:
      C = 1 / math.sqrt(2.0)
    else:
      C = 0.0

    # UCB = quality / times + C * sqrt(2 * ln(total_times) / times)
    left = sub_node.get_quality_value() / sub_node.get_visit_times()
    right = 2.0 * math.log(node.get_visit_times()) / sub_node.get_visit_times()
    score = left + C * math.sqrt(right)

    if score > best_score:
      best_sub_node = sub_node
      best_score = score

  return best_sub_node


def backup(node, reward):
  """
  蒙特卡洛树搜索的Backpropagation阶段,输入前面获取需要expend的节点和新执行Action的reward,反馈给expend节点和上游所有节点并更新对应数据。
  """

  # Update util the root node
  while node != None:
    # Update the visit times
    node.visit_times_add_one()

    # Update the quality value
    node.quality_value_add_n(reward)

    # Change the node to the parent node
    node = node.parent


def monte_carlo_tree_search(node):
  """
  实现蒙特卡洛树搜索算法,传入一个根节点,在有限的时间内根据之前已经探索过的树结构expand新节点和更新数据,然后返回只要exploitation最高的子节点。
  蒙特卡洛树搜索包含四个步骤,Selection、Expansion、Simulation、Backpropagation。
  前两步使用tree policy找到值得探索的节点。
  第三步使用default policy也就是在选中的节点上随机算法选一个子节点并计算reward。
  最后一步使用backup也就是把reward更新到所有经过的选中节点的节点上。
  进行预测时,只需要根据Q值选择exploitation最大的节点即可,找到下一个最优的节点。
  """

  computation_budget = 2

  # Run as much as possible under the computation budget
  for i in range(computation_budget):

    # 1. Find the best node to expand
    expand_node = tree_policy(node)

    # 2. Random run to add node and get reward
    reward = default_policy(expand_node)

    # 3. Update all passing nodes with reward
    backup(expand_node, reward)

  # N. Get the best next node
  best_next_node = best_child(node, False)

  return best_next_node


def main():
  # Create the initialized state and initialized node
  init_state = State()
  init_node = Node()
  init_node.set_state(init_state)
  current_node = init_node

  # Set the rounds to play
  for i in range(10):
    print("Play round: {}".format(i + 1))
    current_node = monte_carlo_tree_search(current_node)
    print("Choose node: {}".format(current_node))


if __name__ == "__main__":
  main()

猜你喜欢

转载自blog.csdn.net/awp0011/article/details/120583861