linux线程间同步(一)

1. 线程同步概念

假设有4个线程A、B、C、D,当前一个线程A对内存中的共享资源进行访问的时候,其他线程B, C, D都不可以对这块内存进行操作,直到线程A对这块内存访问完毕为止,B,C,D中的一个才能访问这块内存,剩余的两个需要继续阻塞等待,以此类推,直至所有的线程都对这块内存操作完毕。 线程对内存的这种访问方式就称之为线程同步,通过对概念的介绍,我们可以了解到所谓的同步并不是多个线程同时对内存进行访问,而是按照先后顺序依次进行的。

1.1 为什么要同步

线程需要分时复用CPU时间片,并且如果测试程序中线程的CPU时间片没用完就被迫挂起了,这样就能让CPU的上下文切换(保存当前状态, 下一次继续运行的时候需要加载保存的状态)更加频繁,更容易再现数据混乱的这个现象。

1.2 同步方式

对于多个线程访问共享资源出现数据混乱的问题,需要进行线程同步。常用的线程同步方式有四种:互斥锁读写锁条件变量信号量。所谓的共享资源就是多个线程共同访问的变量,这些变量通常为全局数据区变量或者堆区变量,这些变量对应的共享资源也被称之为临界资源

找到临界资源之后,再找和临界资源相关的上下文代码,这样就得到了一个代码块,这个代码块可以称之为临界区。确定好临界区(临界区越小越好)之后,就可以进行线程同步了,线程同步的大致处理思路是这样的:
在临界区代码的上边,添加加锁函数,对临界区加锁。

  • 哪个线程调用这句代码,就会把这把锁锁上,其他线程就只能阻塞在锁上了。
  • 在临界区代码的下边,添加解锁函数,对临界区解锁。
  • 出临界区的线程会将锁定的那把锁打开,其他抢到锁的线程就可以进入到临界区了。
  • 通过锁机制能保证临界区代码最多只能同时有一个线程访问,这样并行访问就变为串行访问了。

2. 互斥锁

2.1 互斥锁函数

互斥锁是线程同步最常用的一种方式,通过互斥锁可以锁定一个代码块, 被锁定的这个代码块, 所有的线程只能顺序执行(不能并行处理),这样多线程访问共享资源数据混乱的问题就可以被解决了,需要付出的代价就是执行效率的降低,因为默认临界区多个线程是可以并行处理的,现在只能串行处理。
在Linux中互斥锁的类型为pthread_mutex_t,创建一个这种类型的变量就得到了一把互斥锁:pthread_mutex_t mutex;

在创建的锁对象中保存了当前这把锁的状态信息:锁定还是打开,如果是锁定状态还记录了给这把锁加锁的线程信息(线程ID)。一个互斥锁变量只能被一个线程锁定,被锁定之后其他线程再对互斥锁变量加锁就会被阻塞,直到这把互斥锁被解锁,被阻塞的线程才能被解除阻塞。一般情况下,每一个共享资源对应一个把互斥锁,锁的个数和线程的个数无关

Linux 提供的互斥锁操作函数如下,如果函数调用成功会返回0,调用失败会返回相应的错误号:

// 初始化互斥锁
// restrict: 是一个关键字, 用来修饰指针, 只有这个关键字修饰的指针可以访问指向的内存地址, 其他指针是不行的
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
           const pthread_mutexattr_t *restrict attr);
// 释放互斥锁资源            
int pthread_mutex_destroy(pthread_mutex_t *mutex);

参数:

  • mutex: 互斥锁变量的地址
  • attr: 互斥锁的属性, 一般使用默认属性即可, 这个参数指定为NULL
    修改互斥锁的状态, 将其设定为锁定状态, 这个状态被写入到参数 mutex 中
  • int pthread_mutex_lock(pthread_mutex_t *mutex);

这个函数被调用, 首先会判断参数 mutex 互斥锁中的状态是不是锁定状态:

  • 没有被锁定, 是打开的, 这个线程可以加锁成功, 这个这个锁中会记录是哪个线程加锁成功了
  • 如果被锁定了, 其他线程加锁就失败了, 这些线程都会阻塞在这把锁上
  • 当这把锁被解开之后, 这些阻塞在锁上的线程就解除阻塞了,并且这些线程是通过竞争的方式对这把锁加锁,没抢到锁的线程继续阻塞
// 尝试加锁
int pthread_mutex_trylock(pthread_mutex_t *mutex);

调用这个函数对互斥锁变量加锁还是有两种情况:

  • 如果这把锁没有被锁定是打开的,线程加锁成功
  • 如果锁变量被锁住了,调用这个函数加锁的线程,不会被阻塞,加锁失败直接返回错误号
// 对互斥锁解锁
int pthread_mutex_unlock(pthread_mutex_t *mutex);

不是所有的线程都可以对互斥锁解锁,哪个线程加的锁, 哪个线程才能解锁成功。

2.1 互斥锁使用

我们可以将上面多线程交替数数的例子修改一下,使用互斥锁进行线程同步。两个线程一共操作了同一个全局变量,因此需要添加一互斥锁,来控制这两个线程。

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <pthread.h>

#define MAX 100
// 全局变量
int number;

// 创建一把互斥锁
// 全局变量, 多个线程共享
pthread_mutex_t mutex;

// 线程处理函数
void* funcA_num(void* arg)
{
    
    
    for(int i=0; i<MAX; ++i)
    {
    
    
        // 如果线程A加锁成功, 不阻塞
        // 如果B加锁成功, 线程A阻塞
        pthread_mutex_lock(&mutex);
        int cur = number;
        cur++;
        usleep(10);
        number = cur;
        pthread_mutex_unlock(&mutex);
        printf("Thread A, id = %lu, number = %d\n", pthread_self(), number);
    }

    return NULL;
}

void* funcB_num(void* arg)
{
    
    
    for(int i=0; i<MAX; ++i)
    {
    
    
        // a加锁成功, b线程访问这把锁的时候是锁定的
        // 线程B先阻塞, a线程解锁之后阻塞解除
        // 线程B加锁成功了
        pthread_mutex_lock(&mutex);
        int cur = number;
        cur++;
        number = cur;
        pthread_mutex_unlock(&mutex);
        printf("Thread B, id = %lu, number = %d\n", pthread_self(), number);
        usleep(5);
    }

    return NULL;
}

int main(int argc, const char* argv[])
{
    
    
    pthread_t p1, p2;

    // 初始化互斥锁
    pthread_mutex_init(&mutex, NULL);

    // 创建两个子线程
    pthread_create(&p1, NULL, funcA_num, NULL);
    pthread_create(&p2, NULL, funcB_num, NULL);

    // 阻塞,资源回收
    pthread_join(p1, NULL);
    pthread_join(p2, NULL);

    // 销毁互斥锁
    // 线程销毁之后, 再去释放互斥锁
    pthread_mutex_destroy(&mutex);

    return 0;
}

3. 死锁

当多个线程访问共享资源, 需要加锁, 如果锁使用不当, 就会造成死锁这种现象。如果线程死锁造成的后果是:所有的线程都被阻塞,并且线程的阻塞是无法解开的(因为可以解锁的线程也被阻塞了)。
造成死锁的场景有如下几种:

  • 加锁之后忘记解锁
// 场景1
void func()
{
    
    
    for(int i=0; i<6; ++i)
    {
    
    
        // 当前线程A加锁成功, 当前循环完毕没有解锁, 在下一轮循环的时候自己被阻塞了
        // 其余的线程也被阻塞
    	pthread_mutex_lock(&mutex);
    	....
    	.....
        // 忘记解锁
    }
}

// 场景2
void func()
{
    
    
    for(int i=0; i<6; ++i)
    {
    
    
        // 当前线程A加锁成功
        // 其余的线程被阻塞
    	pthread_mutex_lock(&mutex);
    	....
    	.....
        if(xxx)
        {
    
    
            // 函数退出, 没有解锁(解锁函数无法被执行了)
            return ;
        }
        
        pthread_mutex_lock(&mutex);
    }
}

重复加锁, 造成死锁

void func()
{
    
    
    for(int i=0; i<6; ++i)
    {
    
    
        // 当前线程A加锁成功
        // 其余的线程阻塞
    	pthread_mutex_lock(&mutex);
        // 锁被锁住了, A线程阻塞
        pthread_mutex_lock(&mutex);
    	....
    	.....
        pthread_mutex_unlock(&mutex);
    }
}

// 隐藏的比较深的情况
void funcA()
{
    
    
    for(int i=0; i<6; ++i)
    {
    
    
        // 当前线程A加锁成功
        // 其余的线程阻塞
    	pthread_mutex_lock(&mutex);
    	....
    	.....
        pthread_mutex_unlock(&mutex);
    }
}

void funcB()
{
    
    
    for(int i=0; i<6; ++i)
    {
    
    
        // 当前线程A加锁成功
        // 其余的线程阻塞
    	pthread_mutex_lock(&mutex);
        funcA();		// 重复加锁
    	....
    	.....
        pthread_mutex_unlock(&mutex);
    }
}

在程序中有多个共享资源, 因此有很多把锁,随意加锁,导致相互被阻塞
场景描述:

  1. 有两个共享资源:X, Y,X对应锁A, Y对应锁B
    • 线程A访问资源X, 加锁A
    • 线程B访问资源Y, 加锁B
  2. 线程A要访问资源Y, 线程B要访问资源X,因为资源X和Y已经被对应的锁锁住了,因此这个两个线程被阻塞
    • 线程A被锁B阻塞了, 无法打开A锁
    • 线程B被锁A阻塞了, 无法打开B锁
      在使用多线程编程的时候,如何避免死锁呢?
  • 避免多次锁定, 多检查
  • 对共享资源访问完毕之后, 一定要解锁,或者在加锁的使用 trylock
  • 如果程序中有多把锁, 可以控制对锁的访问顺序(顺序访问共享资源,但在有些情况下是做不到的),另外也可以在对其他互斥锁做加锁操作之前,先释放当前线程拥有的互斥锁。
  • 项目程序中可以引入一些专门用于死锁检测的模块

猜你喜欢

转载自blog.csdn.net/m0_46152793/article/details/123923667