zynq中三种实现GPIO的方式

 

本文介绍在zynq中三种实现GPIO的方式,分别为MIO、EMIO和IP方式。

MIO和EMIO方式是使用PS部分的GPIO模块来实现GPIO功能的,支持54个MIO(可输出三态)、64个输入和128个输出(64个输出和64个输出使能)EMIO

而IP方式是在PL部分实现 GPIO功能,PS部分通过M_AXI_GP接口来控制该GPIO IP模块;另外EMIO模块虽然使用PS部分GPIO但也使用了PL部分的管脚资源。

MIO方式实现GPIO

vivado中zynq设置如下图

mio_vivado中配置

由图中可见要选中打开GPIO,其下自动显示可用于GPIO的MIO(当MIO作为其他功能时就不能作为GPIO使用了),其中MIO 7、MIO 8只能作为输出使用,因为它们用于VMODE管脚(参考UG585第14章:14.2.3)

软件部分如下

#include <stdio.h>
#include "platform.h"
#include "xgpiops.h"

#define LED1    0
#define LED2    9

static void delay(int dly)
{
    int i, j;
    for (i = 0; i < dly; i++) {
        for (j = 0; j < 0xffff; j++) {
            ;
        }
    }
}

int main()
{
    int Status;
    XGpioPs_Config *ConfigPtr;
    XGpioPs Gpio;

    init_platform();

    ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);
    Status = XGpioPs_CfgInitialize(&Gpio, ConfigPtr,
                    ConfigPtr->BaseAddr);
    if (Status != XST_SUCCESS){
        return XST_FAILURE;
    }

    XGpioPs_SetDirectionPin(&Gpio, LED1, 1);
    XGpioPs_SetDirectionPin(&Gpio, LED2, 1);
    XGpioPs_SetOutputEnablePin(&Gpio, LED1, 1);
    XGpioPs_SetOutputEnablePin(&Gpio, LED2, 1);

    while (1) {
        XGpioPs_WritePin(&Gpio, LED1, 0);
        XGpioPs_WritePin(&Gpio, LED2, 1);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED1, 1);
        XGpioPs_WritePin(&Gpio, LED2, 0);
        delay(1000);
    }
    cleanup_platform();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

EMIO方式实现GPIO

vivado中zynq设置如下图

emio_vivado中配置

图中可知GPIO中选择使用EMIO,并选择位宽(这里例子中选择3);其vivado中连接如下图

emio_vivado中连接

上图可知除了FIXED IO和DDR接口外,还多了3个3对(一个输入,一个输出和一个输出使能)GPIO管脚。

不同于MIO,这里三个IO管脚(一个输入,一个输出和一个输出使能在自动生成的顶层模块中合并为一个IO)要绑定到芯片对应管脚上

软件部分如下

#include <stdio.h>
#include "platform.h"
#include "xgpiops.h"

#define LED_R   54
#define LED_G   55
#define LED_B   56
#define LED_ON  0
#define LED_OFF 1

static void delay(int dly)
{
    int i, j;
    for (i = 0; i < dly; i++) {
        for (j = 0; j < 0xffff; j++) {
            ;
        }
    }
}

int main()
{
    int Status;
    XGpioPs_Config *ConfigPtr;
    XGpioPs Gpio;

    init_platform();

    ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);
    Status = XGpioPs_CfgInitialize(&Gpio, ConfigPtr,
                    ConfigPtr->BaseAddr);
    if (Status != XST_SUCCESS) {
        print("cfg init err\n");
        return XST_FAILURE;
    }
    XGpioPs_SetDirectionPin(&Gpio, LED_R, 1);
    XGpioPs_SetOutputEnablePin(&Gpio, LED_R, 1);
    XGpioPs_SetDirectionPin(&Gpio, LED_G, 1);
    XGpioPs_SetOutputEnablePin(&Gpio, LED_G, 1);
    XGpioPs_SetDirectionPin(&Gpio, LED_B, 1);
    XGpioPs_SetOutputEnablePin(&Gpio, LED_B, 1);

    while (1) {
        XGpioPs_WritePin(&Gpio, LED_R, LED_ON);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED_G, LED_ON);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED_B, LED_ON);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED_R, LED_OFF);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED_G, LED_OFF);
        delay(1000);
        XGpioPs_WritePin(&Gpio, LED_B, LED_OFF);
        delay(1000);
    }
    cleanup_platform();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

类似MIO方式(都为PS部分GPIO操作),设置为输出并设置输出使能,但要注意这里的GPIO号是从54开始的3个。

IP方式实现GPIO

vivado中zynq设置如下图

axi_gpio_vivado中配置

图中可知GPIO中MIO和EMIO都不选择,但要打开M_AXI_GP接口(这里选择M_AXI_GP0)和复位管脚,如下图

axi_gpio_vivado中配置_GP和复位

当然用到了PL部分逻辑则至少需要一个时钟输出到PL部分,这里选择FCLK_CLK0输出50MHz,如下图

axi_gpio_vivado中配置_时钟

推荐加入zynq后,不要自动连接,再加入gpio并位宽设置为3,具体设置如下图

axi_gpio_ip设置

GPIO设置好后,再点击上面的蓝色字体的自动连接,即可得到上面的连接,这样可以减少手动连接量。

最后vivado中连接如下图

axi_gpio_vivado中连接

与EMIO类似需要将顶层三个GPIO管脚要绑定到芯片对应管脚上。

软件部分如下

#include <stdio.h>
#include "platform.h"
#include "xgpio.h"

#define AXI_GPIO_DEVICE_ID  XPAR_GPIO_0_DEVICE_ID
#define XGPIO_BANK1         1
#define XGPIO_BANK2         2

#define LED34_R_PIN         0x01
#define LED34_G_PIN         0x02
#define LED34_B_PIN         0x04

static void delay(int dly)
{
    int i, j;
    for (i = 0; i < dly; i++) {
        for (j = 0; j < 0xffff; j++) {
            ;
        }
    }
}

int main()
{
    XGpio_Config *XGpioCfg;
    XGpio XGpio;
    int Status;

    init_platform();

    XGpioCfg = XGpio_LookupConfig(AXI_GPIO_DEVICE_ID);
    Status = XGpio_CfgInitialize(&XGpio, XGpioCfg, XGpioCfg->BaseAddress);
    if (Status != XST_SUCCESS) {
        return XST_FAILURE;
    }

    XGpio_SetDataDirection(&XGpio, XGPIO_BANK1, ~(LED34_R_PIN | LED34_G_PIN | LED34_B_PIN));
    XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, LED34_R_PIN | LED34_G_PIN | LED34_B_PIN);
    while (1) {
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, ~LED34_R_PIN);
        delay(1000);
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, ~(LED34_R_PIN | LED34_G_PIN));
        delay(1000);
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, ~(LED34_R_PIN | LED34_G_PIN | LED34_B_PIN));
        delay(1000);
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, ~(LED34_G_PIN | LED34_B_PIN));
        delay(1000);
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, ~(LED34_B_PIN));
        delay(1000);
        XGpio_DiscreteWrite(&XGpio, XGPIO_BANK1, LED34_R_PIN | LED34_G_PIN | LED34_B_PIN);
        delay(1000);
    }
    cleanup_platform();
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

这里实现的功能与EMIO方式中功能相同,当时IP方式中为PL部分实现的GPIO,所以调用的函数与前面两种GPIO实现函数不同,注意包含的GPIO头文件,前两种是#include "xgpiops.h"而这最后一种为#include "xgpio.h"

总结

MIO和EMIO方式使用PS部分的GPIO模块,其中MIO方式不占用PL部分资源,其输出管脚只能为固定的54个(而且要在未被其它外设使用的情况下),EMIO方式会占用PL的管脚资源,其管脚可在PL部分任意选择(除特殊功能管脚),IP方式除了占用PL部分管脚资源外还会占用PL部分逻辑资源,所以其GPIO功能在PL部分实现其调用函数也和前两种不同,最后EMIO和IP方式在vivado都需要绑定管脚。

猜你喜欢

转载自blog.csdn.net/u010830004/article/details/80204893