手写中文数字识别PyTorch实现(全连接&卷积神经网络)

尝试一下手写汉字的数字识别,分别采用全连接神经网络和卷积神经网络

这次准备的数据集有15000张图片,每张图片大小为64*64

image-20221126171337274

image-20221126232935453

训练集10500张图片,测试集4500张图片

全连接神经网络

我们先用上次手写数字识别的全连接神经网络尝试一下

Dataset代码:

from torch.utils.data import Dataset
import torch
import cv2

class CN_MNIST(Dataset):
    def __init__(self, index_csv):
        self.index_csv = index_csv
        self.dictionary = {
    
    '零': 0, '一': 1, '二': 2, '三': 3, '四': 4, '五': 5, '六': 6, '七': 7, '八': 8, '九': 9, '十': 10, '百': 11, '千': 12, '万': 13, '亿': 14}

    def __getitem__(self, index):
        sample = self.index_csv.iloc[index]
        label = self.dictionary[str(sample['character'])]
        suite_id = sample['suite_id']
        sample_id = sample['sample_id']
        code = sample['code']
        file_name = 'images/input_' + str(suite_id) + '_' + str(sample_id) + '_' + str(code) + '.jpg'
        image = cv2.imread(file_name)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) / 255
        return torch.Tensor(image), torch.Tensor([label]).squeeze().long()

    def __len__(self):
        return len(self.index_csv['code'])

模型以及训练测试代码:

import torch
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from CMINISTdataset import CN_MNIST
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import numpy as np
import torch.nn.functional as F
import pandas as pd


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 1 准备数据集
batch_size = 512

train_dataset = CN_MNIST(pd.read_csv('train_set.csv').sample(frac=1))

train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=0)

test_dataset = CN_MNIST(pd.read_csv('test_set.csv').sample(frac=1))

test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size, num_workers=0)    # 测试集不需要打乱


# 2 设计模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(4096, 2048)
        self.l2 = torch.nn.Linear(2048, 2048)
        self.l3 = torch.nn.Linear(2048, 1024)
        self.l4 = torch.nn.Linear(1024, 1024)
        self.l5 = torch.nn.Linear(1024, 128)
        self.l6 = torch.nn.Linear(128, 15)
        self.dropout = torch.nn.Dropout(p=0.5)
        self.norm = torch.nn.BatchNorm1d(128)

    def forward(self, x):
        x = x.view(-1, 4096)  # 将批量输入的图像展平,-1表示自动计算行数
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x)) + x
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x)) + x
        x = F.relu(self.norm(self.l5(x)))
        return self.dropout(self.l6(x))  # 最后一层不做激活


model = Net()
model.to(device)

# 3 构建损失和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=20, eta_min=1e-9)

# 4 训练
correct_list2 = []
def train(epoch):
    total = 0
    correct = 0
    running_loss = 0
    for i, data in enumerate(train_loader, 0):

        inputs, target = data  # 输入和标签
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        # scheduler.step()
        running_loss += loss.item()

        predicted = torch.argmax(outputs.data, dim=1)  # 返回最大值下标
        total += target.size(0)
        correct += (predicted == target).sum().item()

    print('[%d] loss:%.3f' % (epoch + 1, running_loss))
    running_loss = 0.0
    rate = 100 * correct / total
    print('训练集的准确率为: {:.2f}'.format(rate))
    correct_list2.append(rate)

correct_list = []

# 5 测试
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            # 取每一行最大值为预测结果
            _, predicted = torch.max(outputs.data, dim=1)  # 返回最大值和下标,下划线为占位符,无意义
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        rate = 100 * correct / total
        correct_list.append(rate)
        print('测试集的准确率为: {:.2f}'.format(rate))
        print('-------------------------')



if __name__ == '__main__':
    for epoch in range(50):
        model.train()
        train(epoch)
        model.eval()
        test()

# 绘制Epoch-Loss曲线
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('accuracy%')
plt.plot(np.arange(0, 50, 1), np.array(correct_list))
plt.plot(np.arange(0, 50, 1), np.array(correct_list2))
plt.show()

运行结果:

image-20221126172054346

image-20221126172102374

蓝线是测试集准确率,红线是训练集准确率,二者基本稳定在56%和87%左右波动

卷积神经网络

import torch
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.nn as nn
from CMINISTdataset import CN_MNIST
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import numpy as np
import torch.nn.functional as F
import pandas as pd

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 1 准备数据集
batch_size = 512

train_dataset = CN_MNIST(pd.read_csv('train_set.csv').sample(frac=1))

train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=0)

test_dataset = CN_MNIST(pd.read_csv('test_set.csv').sample(frac=1))

test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size, num_workers=0)  # 测试集不需要打乱


# 2 设计模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 15)

    def forward(self, x):
        size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(size, -1)
        x = self.fc(x)
        return x


model = Net()
model.to(device)

# 3 构建损失和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=20, eta_min=1e-9)

# 4 训练
correct_list2 = []


def train(epoch):
    total = 0
    correct = 0
    running_loss = 0
    for i, data in enumerate(train_loader, 0):
        inputs, target = data  # 输入和标签
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        # scheduler.step()
        running_loss += loss.item()

        predicted = torch.argmax(outputs.data, dim=1)  # 返回最大值下标
        total += target.size(0)
        correct += (predicted == target).sum().item()

    print('[%d] loss:%.3f' % (epoch + 1, running_loss))
    running_loss = 0.0
    rate = 100 * correct / total
    print('训练集的准确率为: {:.2f}'.format(rate))
    correct_list2.append(rate)


correct_list = []


# 5 测试
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            # 取每一行最大值为预测结果
            _, predicted = torch.max(outputs.data, dim=1)  # 返回最大值和下标,下划线为占位符,无意义
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        rate = 100 * correct / total
        correct_list.append(rate)
        print('测试集的准确率为: {:.2f}'.format(rate))
        print('-------------------------')


if __name__ == '__main__':
    for epoch in range(200):
        model.train()
        train(epoch)
        model.eval()
        test()

# 绘制Epoch-Loss曲线
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('accuracy%')
plt.plot(np.arange(0, 200, 1), np.array(correct_list))
plt.plot(np.arange(0, 200, 1), np.array(correct_list2))
plt.show()

运行结果如下:蓝线是测试集准确率,红线是训练集准确率,二者基本稳定在95%和90%左右波动

image-20221126192355232

image-20221126192405436

猜你喜欢

转载自blog.csdn.net/m0_46369272/article/details/128059132