Linux系统中的图形子系统分析

1. 前言

图形子系统是linux系统中比较复杂的子系统之一:对下,它要管理形态各异的、性能各异的显示相关的器件对上,它要向应用程序提供易用的、友好的、功能强大的图形用户界面(GUI)。因此,它是linux系统中少有的、和用户空间程序(甚至是用户)息息相关的一个子系统。

本文是图形子系统分析文章的第一篇,也是提纲挈领的一篇,将会从整体上,对linux显示子系统做一个简单的概述,进而罗列出显示子系统的软件构成,后续的文章将会围绕这些软件一一展开分析。

注1:本文所有的描述将以原生linux系统为例(如Ubuntu、Debian等),对其它基于linux的系统(如Android),部分内容会不适用。

注2:本文很多图片都是从网上搜集而来的(很多是从维基百科)。虽然蜗窝的宗旨是用自己的语言表述,尽量自己画图,但是linux图形子系统太复杂了,蜗蜗的理解有限,而老外的图画的实在太好了哈哈哈。

2. 概念介绍

2.1 GUI(Graphical User Interface,图形用户界面)

linux图形子系统的本质,是提供图形化的人机交互(human-computer interaction)界面,也即常说的GUI(Graphical User Interface)。而人机交互的本质,是人脑通过人的输出设备(动作、声音等),控制电脑的输入设备,电脑经过一系列的处理后,经由电脑的输出设备将结果输出,人脑再通过人的输入设备接收电脑的输出,最终实现“人脑<-->电脑”之间的人机交互。下面一幅摘自维基百科的图片(可从“这里”查看比较清晰的SVG格式的原始图片),对上述过程做了很好的总结:

该图以一个非常前卫的应用场景----虚拟现实(VR,Virtual Reality)游戏,说明了以图形化为主的人机交互过程:

1)人脑通过 动作、声音(对人脑而言,是output),控制电脑的输入设备,包括键盘、鼠标、操作杆、麦克风、游戏手柄(包含加速度计、陀螺仪等传感器)。
2) 电脑通过输入设备,接收人脑的指令,这些指令经过kernel Input subsystem、Middleware Gesture/Speech recognition等软件的处理,转换成应用程序(Game)可以识别的、有意义的信息
3) 应用程序(Game)根据输入信息,做出相应的反馈,主要包括图像和声音。对VR游戏而言,可能需要3D rendering,这可以借助openGL及其相应的用户空间driver实现。
4) 应用程序的反馈,经由kernel的Video subsystem(如DRM/KMS)、audio subsystem(如ALSA),输出到电脑的输出设备上,包括显示设备(2D/3D)、扬声器/耳机(3D Positional Audio)、游戏手柄(力的反馈)等
5)输出到显示设备上时,可能会经过图形加速模块(Graphics accelerator)。

注3:图中提到了VR场景的典型帧率(1280x800@95fps for VR),这是一个非常庞大的信息输出,要求图形子系统能10.5ms的时间内,生成并输出一帧,以RGBA的数据格式为例,每秒需要处理的数据量是1280x800x95x4x8=3.11296Gb,压力和挑战是相当大的(更不用提1080P了)。

2.2 Windowing system(窗口系统)

窗口系统,是GUI的一种(也是当前计算机设备、智能设备广泛使用的一种),以WIMP (windows、icons、menus、pointer) 的形式,提供人机交互接口。Linux系统中有很多窗口系统的实现,如X Window System、Wayland、Android SurfaceFlinger等,虽然形态各异,但思路大致相同,包含如下要点:

1)一般都使用client-server架构,server(称作 display server,或者windows server、compositor等等)管理所有输入设备,以及用于输出的显示设备。
2) 应用程序作为display server的一个client,在自己窗口(window)中运行,并绘制自己的GUI。
3)client的绘图请求,都会提交给display server,display server响应并处理这些请求,以一定的规则混合、叠加,最终在有限的输出资源上(屏幕),显示多个应用程序的GUI。
3)display server和自己的client之间,通过某种类型的通信协议交互,该通信协议通常称作display server protocol。
4)display server protocol可以是基于网络的,甚至是网络透明的(network transparent),如X Window System所使用的。也可以是其它类型的,如Android SurfaceFlinger所使用的binder。

有关Windowing system的详细解释,请参考:https://en.wikipedia.org/wiki/Windowing_system

2.3 X Window System

似乎终于要进入正题了。

X Window System是Windowing System一种实现,广泛使用于UNIX-like的操作系统上(当然也包括Linux系统),由MIT(Massachusetts Institute of Technology,麻省理工学院)在1984年发布。下图(可从“这里”查看比较清晰的SVG格式的原始图片)是它的典型架构:

 

1)X Window System简称X,或者X11,或者X-Windows。之所以称作X,是因为在字母表中X位于W之后,而W是MIT在X之前所使用的GUI系统。之所以称作X11,是因为在1987年的时候,X Window System已经进化到第11个版本了,后续所有的X,都是基于X11版本发展而来的(变动不是很大)。为了方便,后续我们都以X代指X Window System。

2)X最初是由http://X.org(XOrg Foundation)维护,后来基于X11R6发展出来了最初专门给Intel X86架构PC使用的X,称作XFree86(提供X服务,它是自由的,它是基于Intel的PC平台)。而后XFree86发展成为几乎适用于所有类UNIX操作系统的X Window系统,因此在相当长的一段时间里,XFree86也是X的代名词。再后来,从2004年的时候,XFree86不再遵从GPL许可证发行,导致许多发行套件不再使用XFree86,转而使用Xorg,再加上Xorg在X维护工作上又趋于活跃,现在Xorg由成为X的代名词(具体可参考“http://www.x.org/”)。

3)X设计之初,制定了很多原则,其中一条----"It is as important to decide what a system is not as to decide what it is”,决定了X的“性格”,即:X只提供实现GUI环境的基本框架,如定义protocol、在显示设备上绘制基本的图形单元(点、线、面等等)、和鼠标键盘等输入设备交互、等等。它并没有实现UI设计所需的button、menu、window title-bar styles等元素,而是由第三方的应用程序提供。这就是Unix的哲学:只做我应该做、必须做的事情。这就是这么多年来,X能保持稳定的原因。也是Linux OS界面百花齐放(不统一)的原因,各有利弊吧,后续文章会展开讨论。

4)X包括X server和X client,它们之间通过X protocol通信。

5)X server接收X clients的显示请求,并输出到显示设备上,同时,会把输入设备的输入事件,转递给相应的X client。X server一般以daemon进程的形式存在。

6)X protocol是网络透明(network-transparently)的,也就是说,server和client可以位于同一台机器上的同一个操作系统中,也可以位于不同机器上的不同操作系统中(因此X是跨平台的)。这为远端GUI登录提供了便利,如上面图片所示的运行于remote computer 的terminal emulator,但它却可以被user computer的鼠标键盘控制,以及可以输出到user computer的显示器上。

注4:这种情况下,user computer充当server的角色,remote computer是client,有点别扭,需要仔细品味一下(管理输入设备和显示设备的是server)。

7)X将protocol封装为命令原语(X command primitives),以库的形式(xlib或者xcb)向client提供接口。X client(即应用程序)利用这些API,可以向X server发起2D(或3D,通过GLX等扩展,后面会介绍)的绘图请求。

2.4 窗口管理器、GUI工具集、桌面环境及其它

前面讲过,X作为Windowing system中的一种,只提供了实现GUI环境的基本框架,其它的UI设计所需的button、menu、window title-bar styles等基本元素,则是由第三方的应用程序提供。这些应用程序主要包括:窗口管理器(window manager)、GUI工具集(GUI widget toolkit)和桌面环境(desktop environment)。

窗口管理器负责控制应用程序窗口(application windows)的布局和外观,使每个应用程序窗口尽量以统一、一致的方式呈现给用户,如针对X的最简单的窗口管理程序--twm(Tab Window Manager)。

GUI工具集是Windowing system之上的进一步的封装。还是以X为例,它通过xlib提供给应用程序的API,仅仅可以绘制基本的图形单元(点、线、面等等),这些基本的图形单元,要组合成复杂的应用程序,还有很多很多细碎、繁杂的任务要做。因此,一些特定的操作系统,会在X的基础上,封装出一些更为便利的GUI接口,方便应用程序使用,如Microwindows、GTK+、QT等等。

桌面环境是应用程序级别的封装,通过提供一系列界面一致、操作方式一致的应用程序,使系统以更为友好的方式向用户提供服务。Linux系统比较主流的桌面环境包括GNOME、KDE等等。

2.5 3D渲染、硬件加速、OpenGL及其它

渲染(Render)在电脑绘图中,是指:用软件从模型生成图像的过程。模型是用严格定义的语言或者数据结构对于三维物体的描述,它包括几何、视点、纹理以及照明信息。图像是数字图像或者位图图像。

上面的定义摘录自“百度百科”,它是着重提及“三维物体”,也就是我们常说的3D渲染。其实我们在GUI编程中习以为常的点、线、矩形等等的绘制,也是渲染的过程中,只不过是2D渲染。2D渲染面临的计算复杂度和性能问题没有3D厉害,因此渲染一般都是指3D渲染。

在计算机中,2D渲染一般是由CPU完成(也可以由专门的硬件模块完成)。3D渲染也可以由CPU完成,但面临性能问题,因此大多数平台都会使用单独硬件模块(GPU或者显卡)负责3D渲染。这种通过特定功能的硬件模块,来处理那些CPU不擅长的事务的方法,称作硬件加速(Hardware acceleration),相应的硬件模块,就是硬件加速模块

众所周知,硬件设备是多种多样的,为了方便应用程序的开发,需要一个稳定的、最好是跨平台的API,定义渲染有关的行为和动作。OpenGL(Open Graphics Library)就是这类API的一种,也是最为广泛接纳的一种。

虽然OpenGL只是一个API,但由于3D绘图的复杂性,它也是相当的复杂的。不过,归根结底,它的目的有两个:

1)对上,屏蔽硬件细节,为应用程序提供相对稳定的、平台无关的3D图像处理API(当然,也可以是2D)。
2)对下,指引硬件相关的驱动软件,实现3D图像处理相关的功能。

另外,openGL的一个重要特性,是独立于操作系统和窗口系统而存在的,具体可以参考后面软件框架相关的章节。

3. 软件框架

通过第2章的介绍,linux系统中图形有关的软件层次已经呼之欲出,具体如下:

该层次图中大部分的内容,已经在第2章解释过了,这里再补充说明一下:

1)该图片没有体现3D渲染、硬件加速等有关的内容,而这些内容却是当下移动互联、智能化等产品比较关注的地方,也是linux平台相对薄弱的环节。后续会在软件框架有关的内容中再着重说明。

2)从层次结构的角度看,linux图形子系统是比较清晰的,但牵涉到每个层次上的实现的时候,就比较复杂了,因为有太多的选择了,这可归因于“提供机制,而非策略”的Unix软件准则。该准则为类Unix平台软件的多样性、针对性做出了很大的贡献,但在今天这种各类平台趋于整合的大趋势下,过多的实现会导致用户体验的不一致、开发者开发精力分散等弊端,值得我们思考。

3)虽然图形子系统的层次比较多,但不同的人可能关注的内容不太一样。例如对Linux系统工程师(驱动&中间件)而言,比较关注hardware、kernel和display server这三个层次。而对Application工程师来说,可能更比较关心GUI Toolkits。本文以及后续display subsystem的文章,主要以Linux系统工程师的视角,focus在hardware、kernel和display server(可能包括windows manager)上面。

以X window为例,将hardware、kernel和display server展开如下(可从“这里”查看比较清晰的SVG格式的原始图片):

对于软件架构而言,这张来自维基百科的图片并不是特别合适,因为它包含了太多的细节,从而显得有些杂乱。不过瑕不掩瑜,对本文的描述,也足够了。从向到下,图中包括如下的软件的软件模块:

1)3D-game engine、Applications和Toolkits,应用软件,其中3D-game engine是3D application的一个特例。

2)Display Server

图片给出了两个display server:Wayland compositor和X-Server(http://X.Org)。X-Server是linux系统在PC时代使用比较广泛的display server,而Wayland compositor则是新设计的,计划在移动时代取代X-Server的一个新的display server。

3)libX/libXCB和libwayland-client

display server提供给Application(或者GUI Toolkits)的、访问server所提供功能的API。

libX/libXCB对应X-server,libwayland-client对已Wayland compositor。

4)libGL

libGL是openGL接口的实现,3D application(如这里的3D-game engine)可以直接调用libGL进行3D渲染。

libGL可以是各种不同类型的openGL实现,如openGL(for PC场景)、openGL|ES(for嵌入式场景)、openVG(for Flash、SVG矢量图)。

libGL的实现,既可以是基于软件的,也可以是基于硬件的。其中Mesa 3D是OpenGL的一个开源本的实现,支持3D硬件加速。

5)libDRM和kernel DRM

DRI(Direct Render Infrastructure)的kernel实现,及其library。X-server或者Mesa 3D,可以通过DRI的接口,直接访问底层的图形设备(如GPU等)。

6)KMS(Kernel Mode Set)

一个用于控制显示设备属性的内核driver,如显示分辨率等。直接由X-server控制。

4. 后续工作

本文有点像一个大杂烩,丢进去太多的东西,每个东西又不能细说。觉得说了很多,又觉得什么都没有说。后续蜗蜗将有针对性的,focus在某些点上面,更进一步的分析,思路如下:

1)将会把显示框架限定到某个确定的实现上,初步计划是:Wayland client+Wayland compositor+Mesa+DRM+KMS,因为它们之中,除了Mesa之外,其它的都是linux系统中显示有关的比较前沿的技术。当然,最重要的,是比较适合移动端的技术。

2)通过单独的一篇文章,更详细的分析Wayland+Mesa+DRM+KMS的软件框架,着重分析图像送显、3D渲染、Direct render的过程,以此总结出DRM的功能和工作流程。

3)之后,把重心拉回kernel部分,主要包括DRM和KMS,当然,也会顺带介绍framebuffer。

4)kernel部分分析完毕后,回到Wayland,主要关心它的功能、使用方式等等。

5)其它的,边学、边写、边看吧。

上文介绍了linux图形子系统基本的软件框架,以及GUI、Windowing system、3D渲染等基本概念。

我觉得,DRI在当前(或者说将来)的linux图形子系统中,有着举足轻重的地位,甚至可以说是新的linux图形框架核心思想的体现。本文将基于linux图形框架的发展历程,从Why、What和How三个角度,介绍DRI框架。

5.为什么需要DRI

在GUI环境中,一个Application想要将自身的UI界面呈现给用户,需要2个步骤:

1)根据实际情况,将UI绘制出来,以一定的格式,保存在buffer中。该过程就是常说的“Rendering”。

不知道为什么,wowo一直觉得“Render”这个英文单词太专业、太抽象了,理解起来有些困难。时间久了,也就不再执著了,看到它时,就想象一下内存中的图像数据(RGB或YUV格式),Rendering就是生成它们的过程。

通常来说,Rendering有多种表现形式,但可归结为如下几类:

a)2D的点、线、面等绘图,例如,“通过一个for循环,生成一个大小为640x480、格式为RGB888、填充颜色为红色的矩形框”,就是一个2D rendering的例子。

b)3D渲染。该过程牵涉比较复杂的专业知识,这里先不举例了。

c)图片、视频等多媒体解码。

d)字体渲染,例如直接从字库中抽出。

2)将保存在buffer中的UI数据,显示在display device上。该过程一般称作“送显”。

然后问题就来了:这两个步骤中,display server要承担什么样的角色?回答这个问题之前,我们需要知道这样的一个理念:

在操作系统中,Application不应该直接访问硬件,通常的软件框架是(从上到下):Application<---->Service<---->Driver<---->Hardware。这样考虑的原因主要有二:安全性共享硬件资源(例如显示设备只有一个,却有多个应用想要显示)。

对稍微有经验的软件开发人员(特别是系统工程师和驱动工程师)来说,这种理念就像杀人偿命、欠债还钱一样天经地义。但直到X server+3D出现之后,一切都不好了。因为X server大喊的着:“让我来!”,给出了这样的框架:

先不考虑上面的GLX、Utah GLX等术语,我们只需要理解一点即可:

基于OpenGL的3D program需要进行3D rendering的时候,需要通过X server的一个扩展(GLX),请求X server帮忙处理。X server再通过底层的driver(位于用户空间),通过kernel,访问硬件(如GPU)。

其它普通的2D rendering,如2D绘图、字体等,则直接请求X server帮忙完成。

看着不错哦,完全满足上面的理念。但计算机游戏、图形设备硬件等开发人员不乐意了:请让我们直接访问硬件!因为很多高性能的图形设备,要求相应的应用程序直接访问硬件,才能实现性能最优。

好像每个人都是对的,怎么办?妥协的结果是,为3D Rendering另起炉灶,给出一个直接访问硬件的框架,DRI就应运而生了,如下:

上面好像讲的都是Rendering有关的内容,那送显呢?还是由display server统一处理比较好,因为显示设备是有限的,多个应用程序的多个界面都要争取这有限的资源,server会统一管理、叠加并显示到屏幕上。而这里叠加的过程,通常称作合成(Compositor)。

6.软件架构

DRI是因3D而生,但它却不仅仅是为3D而存在,这背后涉及了最近Linux图形系统设计思路的转变,即:

从以前的:X server是宇宙的中心,其它的接口都要和我对话。

转变为:Linux kernel及其组件为中心,X server(如Wayland compositor等)只是角落里的一员,可有可无。

最终,基于DRI的linux图形系统如下

该框架以基于Wayland的Windowing system为例,描述了linux graphic系统在DRI框架下,通过两条路径(DRM和KMS),分别实现Rendering和送显两个显示步骤。从应用的角度,显示流程是:

1)Application(如3D game)根据用户动作,需要重绘界面,此时它会通过OpenGL|ES、EGL等接口,将一系列的绘图请求,提交给GPU。

a)OpenGL|ES、EGL的实现,可以有多种形式,这里以Mesa 3D为例,所有的3D rendering请求,都会经过该软件库,它会根据实际情况,通过硬件或者软件的方式,响应Application的rendering请求。

b)当系统存在基于DRI的硬件rendering机制时,Mesa 3D会通过libGL-meas-DRI,调用DRI提供的rendering功能。

c)libGL-meas-DRI会调用libdrm,libdrm会通过ioctl调用kernel态的DRI驱动,这里称作DRM(Direct Rendering Module)。

d)kernel的DRM模块,最终通过GPU完成rendering动作。

2)GPU绘制完成后,将rendering的结果返回给Application。

rendering的结果是以image buffer的形式返回给应用程序。

3)Application将这些绘制完成的图像buffer(可能不知一个)送给Wayland compositor,Wayland compositor会控制硬件,将buffer显示到屏幕上。

Wayland compositor会搜集系统Applications送来的所有image buffers,并处理buffer在屏幕上的坐标、叠加方式后,直接通过ioctl,交给kernel KMS(kernel mode setting)模块,该模块会控制显示控制器将图像显示到具体的显示设备上。

7.DRM和KMS

DRM是Direct Rendering Module的缩写,是DRI框架在kernel中的实现,负责管理GPU(或显卡,graphics card)及相应的graphics memory,主要功能有二:

1)统一管理、调度多个应用程序向显卡发送的命令请求,可以类比为管理CPU资源的进程管理(process management)模块。

2)统一管理显示有关的memory(memory可以是GPU专用的,也可以是system ram划给GPU的,后一种方法在嵌入式系统比较常用),该功能由GEM(Graphics Execution Manager)模块实现,主要包括:

a) 允许用户空间程序创建、管理、销毁video memory对象(称作“"GEM objects”,以handle为句柄)。
b)允许不同用户空间程序共享同一个"GEM objects”(需要将不唯一的handle转换为同一个driver唯一的GEM name,后续使用dma buf)。
c)处理CPU和GPU之间内存一致性的问题。
d)video memory都在kernel管理,便于给到display controller进行送显(Application只需要把句柄通过Wayland Compositor递给kernel即可,kernel会自行获取memory及其内容)。

KMS是Kernel Mode Setting的缩写,也称作Atomic KMS,它是一个在linux 4.2版本的kernel上,才最终定性的技术。从字面意义上理解,它要实现的功能比较简单,即:显示模式(display mode)的设置,包括屏幕分辨率(resolution)、颜色深的(color depth)、屏幕刷新率(refresh rate)等等。一般来说,是通过控制display controller的来实现上述功能的。

也许大家会有疑问:这些功能和DRI有什么关系?说实话,关系不大,之所以要在DRI框架里面提及KMS,完全是历史原因,导致KMS的代码,放到DRM中实现了。目前的kernel版本(如4.2之后),KMS和DRM基本上没有什么逻辑耦合(除了代码位于相同目录,以及通过相同的设备节点提供ioctl之外),可以当做独立模块看待。

参考文档
[1]:  https://en.wikipedia.org/wiki/Direct_Rendering_Infrastructure
[2]:  https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
[3]:  http://wayland.freedesktop.org/architecture.html
[4]:  Linux_kernel_and_daemons_with_exclusive_access.svg
[5]:  Wayland_display_server_protocol.svg

转自:Linux系统中少有的图形子系统分析 - 知乎 

猜你喜欢

转载自blog.csdn.net/fuhanghang/article/details/130132088