JVM垃圾回收机制及算法详解

分代回收理论

理论大体是一下两个意思:

  1. 绝大部分的对象都是朝生夕死。
  2. 熬过多次垃圾回收的对象就越难回收。

根据以上两个理论,朝生夕死的对象放一个区域,难回收的对象放另外一个区域,这个就构成了新生代和老年代。
在这里插入图片描述

GC分类

  1. 新生代回收(Minor GC/Young GC):指只是进行新生代的回收。
  2. 老年代回收(Major GC/Old GC):指只是进行老年代的回收。目前只有 CMS 垃圾回收器会有这个单独的回收老年代的行为。(Major GC 定义是比较混乱,有说指是老年代,有的说是做整个堆的收集,这个需要你根据别人的场景来定,没有固定的说法)
  3. 整堆回收(Full GC):收集整个 Java 堆和方法区(注意包含方法区)

垃圾回收算法

复制算法(Copying):
将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半。
但是要注意:内存移动是必须实打实的移动(复制),所以对应的引用(直接指针)需要调整。
复制回收算法适合于新生代,因为大部分对象朝生夕死,那么复制过去的对象比较少,效率自然就高,另外一半的一次。
在这里插入图片描述

Appel 式回收:
一种更加优化的复制回收分代策略:具体做法是分配一块较大的 Eden 区和两块较小的 Survivor 空间(你可以叫做 From 或者 To,也可以叫做 Survivor1 和Survivor2)。
专门研究表明,新生代中的对象 98%是“朝生夕死”的,所以并不需要按照 1:1 的比例来划分内存空间,而是将内存分为一块较大的 Eden 空间和两块较小的 Survivor 空间,每次使用 Eden 和其中一块 Survivor[1]。当回收时,将 Eden 和 Survivor 中还存活着的对象一次性地复制到另外一块 Survivor 空间上,最后清理掉 Eden 和刚才用过的 Survivor 空间。
HotSpot 虚拟机默认 Eden 和 Survivor 的大小比例是 8:1,也就是每次新生代中可用内存空间为整个新生代容量的 90%(80%+10%),只有 10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于 10%的对象存活,当 Survivor 空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。
在这里插入图片描述

标记-清除算法(Mark-Sweep):
算法分为“标记”和“清除”两个阶段:首先扫描所有对象标记出需要回收的对象,在标记完成后扫描回收所有被标记的对象,所以需要扫描两遍。
回收效率略低,如果大部分对象是朝生夕死,那么回收效率降低,因为需要大量标记对象和回收对象,对比复制回收效率要低。
它的主要问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾回收动作。回收的时候如果需要回收的对象越多,需要做的标记和清除的工作越多,所以标记清除算法适用于老年代

标记-整理算法(Mark-Compact):
首先标记出所有需要回收的对象,在标记完成后,后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。标记整理算法虽然没有内存碎片,但是效率偏低。
我们看到标记整理与标记清除算法的区别主要在于对象的移动。对象移动不单单会加重系统负担,同时需要全程暂停用户线程才能进行,同时所有引用对象的地方都需要更新(直接指针需要调整)。所以看到,老年代采用的标记整理算法与标记清除算法,各有优点,各有缺点。

JVM中常见的垃圾回收器

在新生代中,每次垃圾回收时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成回收。
而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。
在这里插入图片描述

Stop The World(STW):
单线程进行垃圾回收时,必须暂停所有的工作线程,直到它回收结束。这个暂停称之为“Stop The World”,但是这种 STW 带来了恶劣的用户体验,例如:应用每运行一个小时就需要暂停响应 5 分。这个也是早期 JVM 和 java 被 C/C++语言诟病性能差的一个重要原因。所以 JVM 开发团队一直努力消除或降低 STW的时间。

Parallel Scavenge(ParallerGC)/Parallel Old:
为了提高回收效率,从 JDK1.3 开始,JVM 使用了多线程的垃圾回收机制,关注吞吐量的垃圾收集器,高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
所谓吞吐量就是 CPU 用于运行用户代码的时间与 CPU 总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了 100 分钟,其中垃圾收集花掉 1 分钟,那吞吐量就是 99%。该垃圾回收器适合回收堆空间上百兆~几个 G。

JDK1.8 默认就是以下组合:
-XX:+UseParallelGC 新生代使用 Parallel Scavenge,老年代使用 Parallel Old

-XX:MaxGCPauseMillis:
在这里插入图片描述
不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集 300MB 新生代肯定比收集 500MB 快,但这也直接导致垃圾收集发生得更频繁,原来 10 秒收集一次、每次停顿 100 毫秒,现在变成 5 秒收集一次、 每次停顿 70 毫秒。停顿时间的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio:
-XX:GCTimeRatio 参数的值则应当是一个大于 0 小于 100 的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。
例如:把此参数设置为 19, 那允许的最大垃圾收集时占用总时间的 5% (即 1/(1+19)), 默认值为 99,即允许最大 1% (即 1/(1+99))的垃圾收集时间由于与吞吐量关系密切,ParallelScavenge 是“吞吐量优先垃圾回收器”。

-XX:+UseAdaptiveSizePolicy:
-XX:+UseAdaptiveSizePolicy (默认开启)。这是一个开关参数, 当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden 与 Survivor 区的比例(-XX:SurvivorRatio)、 晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。
在这里插入图片描述

Concurrent Mark Sweep (CMS):
在这里插入图片描述
整个过程分为 4 个步骤,包括:

  • 初始标记-短暂,仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快。
  • 并发标记-和用户的应用程序同时进行,进行 GC Roots 追踪的过程,标记从 GCRoots 开始关联的所有对象开始遍历整个可达分析路径的对象。这个时间比较长,所以采用并发处理(垃圾回收器线程和用户线程同时工作)
  • 重新标记-短暂,为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
  • 并发清除 由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS 收集器的内存回收过程是与用户线程一起并发执行的。

CMS回收器有哪些问题:

  1. CPU 敏感:CMS 对处理器资源敏感,毕竟采用了并发的收集、当处理核心数不足 4 个时,CMS 对用户的影响较大。

  2. 浮动垃圾
    由于 CMS 并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS 无法在当次收集中处理掉它们,只好留待下一次 GC 时再清理掉。这一部分垃圾就称为“浮动垃圾”。
    由于浮动垃圾的存在,因此需要预留出一部分内存,意味着 CMS 收集不能像其它收集器那样等待老年代快满的时候再回收。
    在 1.6 的版本中老年代空间使用率阈值(92%)
    如果预留的内存不够存放浮动垃圾,就会出现 Concurrent Mode Failure,这时虚拟机将临时启用 Serial Old 来替代 CMS。

  3. 会产生空间碎片。标记 - 清除算法会导致产生不连续的空间碎片

Garbage First(G1):
在这里插入图片描述
G1 的运作过程大致可划分为以下四个步骤:

  1. 初始标记( Initial Marking)
    仅仅只是标记一下 GC Roots 能直接关联到的对象,并且修改 TAMS 指针的值,让下一阶段用户线程并发运行时,能正确地在可用的 Region 中分配新对象。
    这个阶段需要停顿线程,但耗时很短,而且是借用进行 Minor GC 的时候同步完成的,所以 G1 收集器在这个阶段实际并没有额外的停顿。

  2. 并发标记( Concurrent Marking)
    从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,并发时有引用变动的对象,这些对象会漏标,漏 标 的 对 象 会 被 一 个 叫 做SATB(snapshot-at-the-beginning)算法来解决

  3. 最终标记( Final Marking)
    对用户线程做另一个短暂的暂停,用于处理并发阶段结后仍遗留下来的最后那少量的 SATB 记录(漏标对象)。

  4. 筛选回收( Live Data Counting and Evacuation)
    负责更新 Region 的统计数据,对各个 Region 的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个 Region 构成回收集,然后把决定回收的那一部分 Region 的存活对象复制到空的 Region 中,再清理掉整个旧 Region 的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

特点:
并行与并发:G1 能充分利用多 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿的时间,部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 Java 程序继续执行。

分代收集:与其他收集器一样,分代概念在 G1 中依然得以保留。虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次 GC 的旧对象以获取更好的收集效果。

空间整合:与 CMS 的“标记—清理”算法不同,G1 从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着 G1 运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次 GC。

G1垃圾回收器适合回收堆空间上百 G。一般在 G1 和 CMS 中间选择的话平衡点在 6~8G,只有内存比较大 G1 才能发挥优势。
在这里插入图片描述

垃圾回收器总结

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GC日志

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq1309664161/article/details/128271963