微积分——巧解不定积分和定积分问题

1. 知识归纳:

1.1 定积分性质

以下结论在 f ( x ) , g ( x ) , ∣ f ( x ) ∣ , f\left( x \right),g\left( x \right),\left| {f\left( x \right)} \right|, f(x),g(x),f(x), [ a , b ] [ a , c ] [ c , b ] \left[ {a,b} \right]\left[ {a,c} \right]\left[ {c,b} \right] [a,b][a,c][c,b] 可积,且 a < c < b a<c<b a<c<b

  1. (线性性质) ∫ a b [ α f ( x ) ± β g ( x ) ] d x = α ∫ a b f ( x ) d x ± β ∫ a b g ( x ) d x ( α β ∈ R ) \int_a^b {\left[ {\alpha f\left( x \right) \pm \beta g\left( x \right)} \right]dx} = \alpha \int_a^b {f\left( x \right)} dx \pm \beta \int_a^b {g\left( x \right)} dx\left( {\alpha \beta \in R} \right) ab[αf(x)±βg(x)]dx=αabf(x)dx±βabg(x)dx(αβR)
  2. (非负性质) f ( x ) f\left( x \right) f(x) [ a , b ] \left[ {a,b} \right] [a,b] 上非负可积,则 ∫ a b f ( x ) d x ≥ 0 \int_a^b {f\left(x \right)} dx \ge {\rm{0}} abf(x)dx0
  3. (单调性)若 f ( x ) ≥ g ( x ) ( x ∈ [ a , b ] ) f\left( x \right) \ge g\left( x \right)\left( {x \in \left[ {a,b} \right]} \right) f(x)g(x)(x[a,b]),则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_a^b {f\left( x \right)} dx \ge \int_a^b {g\left( x \right)} dx abf(x)dxabg(x)dx
  4. m ≤ f ( x ) ≤ M ( x ∈ [ a , b ] ) , m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m \le f\left( x \right) \le M\left( {x \in \left[ {a,b} \right]} \right),m\left( {b - a} \right) \le \int_a^b {f\left( x \right)} dx \le M\left( {b - a} \right) mf(x)M(x[a,b]),m(ba)abf(x)dxM(ba)
  5. ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \left| {\int_a^b {f\left( x \right)} dx} \right| \le \int_a^b {\left| {f\left( x \right)} \right|} dx abf(x)dxabf(x)dx
  6. (区间可加性) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b {f\left( x \right)} dx{\rm{ = }}\int_a^c {f\left( x \right)} dx{\rm{ + }}\int_c^b {f\left( x \right)} dx abf(x)dx=acf(x)dx+cbf(x)dx
  7. (积分中值定理) ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^b {f\left( x \right)} g\left( x \right)dx{\rm{ = }}f\left( \xi \right)\int_a^b {g\left( x \right)} dx abf(x)g(x)dx=f(ξ)abg(x)dx 推论:令 g ( x ) = 1 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) g\left( x \right){\rm{ = 1}}\int_a^b {f\left( x \right)} dx{\rm{ = }}f\left( \xi \right)\left( {b - a} \right) g(x)=1abf(x)dx=f(ξ)(ba), ( 积 分 中 值 : ∫ a b f ( x ) d x ( b − a ) ) \left(积分中值:{\frac{ {\int_a^b {f\left( x \right)} dx}}{ {\left( {b - a} \right)}}} \right) ((ba)abf(x)dx)
  8. C a u c h y − S c h w a r t z 不 等 式 : ( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x ( 竞 赛 必 记 ) M i n k o w w s k i 不 等 式 : ( ∫ a b [ f ( x ) + g ( x ) ] 2 d x ) 1 2 ≤ ( ∫ a b f 2 ( x ) d x ) 1 2 + ( ∫ a b g 2 ( x ) d x ) 1 2 \begin{array}{l} Cauchy - Schwartz不等式:{\left( {\int_a^b {f\left( x \right)} g\left( x \right)dx} \right)^2} \le \int_a^b { {f^2}\left( x \right)} dx\int_a^b { {g^2}\left( x \right)} dx\left( {竞赛必记} \right)\\ Minkowwski不等式:{\left( {\int_a^b { { {\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}dx} } \right)^{\frac{1}{2}}} \le {\left( {\int_a^b { {f^2}\left( x \right)} dx} \right)^{\frac{1}{2}}} + {\left( {\int_a^b { {g^2}\left( x \right)} dx} \right)^{\frac{1}{2}}} \end{array} CauchySchwartz:(abf(x)g(x)dx)2abf2(x)dxabg2(x)dx()Minkowwski:(ab[f(x)+g(x)]2dx)21(abf2(x)dx)21+(abg2(x)dx)21
  9. 变上下限积分求导:一般,若 u ( x ) , v ( x ) u\left( x \right),v\left( x \right) u(x),v(x) ,是可微函数, f f f 是连续函数,则有: d d x ( ∫ v ( x ) u ( x ) f ( t ) d t ) = f ( u ( x ) ) u ′ ( x ) − f ( v ( x ) ) v ′ ( x ) \frac{d}{ {dx}}\left( {\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} } \right)=f(u(x))u'(x)-f(v(x))v'(x) dxd(v(x)u(x)f(t)dt)=f(u(x))u(x)f(v(x))v(x)

1.2 计算技巧公式:

  1. f ( x ) f(x) f(x) 奇函数,则 ∫ − a a f ( x ) d x = 0 \int_{ - a}^a {f\left( x \right)} dx = 0 aaf(x)dx=0

  2. f ( x ) f(x) f(x) 偶函数,则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{ - a}^a {f\left( x \right)} dx = 2\int_0^a {f\left( x \right)} dx aaf(x)dx=20af(x)dx

  3. f ( x ) f(x) f(x) 周期函数 l l l 函数,则 ∫ a a + l f ( x ) d x = ∫ 0 l f ( x ) d x = ∫ − l 2 l 2 f ( x ) d x \int_a^{a + l} {f\left( x \right)} dx = \int_0^l {f\left( x \right)} dx = \int_{ - \frac{l}{2}}^{\frac{l}{2}} {f\left( x \right)} dx aa+lf(x)dx=0lf(x)dx=2l2lf(x)dx

  4. (1). f ( x ) f(x) f(x) [ 0 , a ] [0,a] [0,a] [ 0 , a ] , ∫ 0 a f ( x ) d x = ∫ 0 a 2 f ( x ) d x + ∫ 0 a 2 f ( a − x ) d x \left[ {0,a} \right],\int_0^a {f\left( x \right)} dx = \int_0^{\frac{a}{2}} {f\left( x \right)} dx + \int_0^{\frac{a}{2}} {f\left( {a - x} \right)} dx [0,a],0af(x)dx=02af(x)dx+02af(ax)dx

    ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x \int_0^a {f\left( x \right)} dx = \int_0^a {f\left( {a - x} \right)} dx 0af(x)dx=0af(ax)dx (这个公式用的比较多)

    (2). f ( x ) f(x) f(x) [ − a , a ] [-a,a] [a,a] ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{ - a}^a {f\left( x \right)} dx = \int_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} aaf(x)dx=0a[f(x)+f(x)]dx

    ​ 补充: ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_{\rm{0}}^\pi {xf\left( {\sin x} \right)} dx = \frac{\pi }{2}\int_{\rm{0}}^\pi {f\left( {\sin x} \right)} dx 0πxf(sinx)dx=2π0πf(sinx)dx

2. 不定积分

例题1 ∫ 1 1 + x 4 d x \int {\frac{1}{ {1 + {x^4}}}} dx 1+x41dx

= 1 2 ∫ 1 + x 2 1 + x 4 − x 2 − 1 1 + x 4 d x = 1 2 ∫ d ( x − 1 x ) ( x − 1 x ) 2 + 2 − 1 2 ∫ d ( x + 1 x ) ( x + 1 x ) 2 − 2    = 1 2 2 arctan ⁡ 1 2 ( x − 1 x ) − 1 4 2 ln ⁡ ∣ x + 1 x − 2 x + 1 x + 2 ∣ + c ( x ≠ 0 ) \begin{array}{l} = \frac{1}{2}\int {\frac{ {1 + {x^2}}}{ {1 + {x^4}}} - \frac{ { {x^2} - 1}}{ {1 + {x^4}}}} dx = \frac{1}{2}\int {\frac{ {d\left( {x - \frac{1}{x}} \right)}}{ { { {\left( {x - \frac{1}{x}} \right)}^2} + 2}}} - \frac{1}{2}\int {\frac{ {d\left( {x + \frac{1}{x}} \right)}}{ { { {\left( {x + \frac{1}{x}} \right)}^2} - 2}}} \\\;\\ = \frac{1}{ {2\sqrt 2 }}\arctan \frac{1}{ {\sqrt 2 }}\left( {x - \frac{1}{x}} \right) - \frac{1}{ {4\sqrt 2 }}\ln \left| {\frac{ {x + \frac{1}{x} - \sqrt 2 }}{ {x + \frac{1}{x} + \sqrt 2 }}} \right| + c\left( {x \ne 0} \right)\end{array} =211+x41+x21+x4x21dx=21(xx1)2+2d(xx1)21(x+x1)22d(x+x1)=22 1arctan2 1(xx1)42 1lnx+x1+2 x+x12 +c(x=0)

例题2 ∫ d x sin ⁡ 3 x cos ⁡ x \int {\frac{ {dx}}{ { { {\sin }^3}x\cos x}}} sin3xcosxdx

= ∫ sin ⁡ 2 x + cos ⁡ 2 x sin ⁡ 3 x cos ⁡ x d x = ∫ d tan ⁡ x tan ⁡ x + ∫ d sin ⁡ x sin ⁡ 3 x    = ln ⁡ ∣ tan ⁡ x ∣ − 1 2 sin ⁡ 2 x + C \begin{array}{l} = \int {\frac{ { { {\sin }^2}x + { {\cos }^2}x}}{ { { {\sin }^3}x\cos x}}dx} = \int {\frac{ {d\tan x}}{ {\tan x}}} + \int {\frac{ {d\sin x}}{ { { {\sin }^3}x}}} \\ \;\\= \ln \left| {\tan x} \right| - \frac{1}{ {2{ {\sin }^2}x}} + C\end{array} =sin3xcosxsin2x+cos2xdx=tanxdtanx+sin3xdsinx=lntanx2sin2x1+C

例题3 ∫ x + sin ⁡ x 1 + cos ⁡ x d x \int {\frac{ {x + \sin x}}{ {1 + \cos x}}} dx 1+cosxx+sinxdx

= ∫ x 1 + cos ⁡ x d x + ∫ sin ⁡ x 1 + cos ⁡ x d x = ∫ x cos ⁡ 2 x 2 d x 2 + ∫ sin ⁡ x 1 + cos ⁡ x d x    = x tan ⁡ x 2 − ∫ tan ⁡ x 2 d x + ∫ tan ⁡ x 2 d x = x tan ⁡ x 2 + C \begin{array}{l} = \int {\frac{x}{ {1 + \cos x}}} dx + \int {\frac{ {\sin x}}{ {1 + \cos x}}} dx = \int {\frac{x}{ { { {\cos }^2}\frac{x}{2}}}} d\frac{x}{2} + \int {\frac{ {\sin x}}{ {1 + \cos x}}} dx\\\;\\= x\tan \frac{x}{2} - \int {\tan \frac{x}{2}} dx + \int {\tan \frac{x}{2}} dx = x\tan \frac{x}{2} + C \end{array} =1+cosxxdx+1+cosxsinxdx=cos22xxd2x+1+cosxsinxdx=xtan2xtan2xdx+tan2xdx=xtan2x+C

例题4 ∫ 1 − x 1 + x d x x \int {\sqrt {\frac{ {1 - x}}{ {1 + x}}} } \frac{ {dx}}{x} 1+x1x xdx t = 1 − x 1 + x , x = 1 − t 2 1 + t 2 , d x = − 4 t ( 1 + t 2 ) 2 d t {t = \sqrt {\frac{ {1 - x}}{ {1 + x}}} ,x = \frac{ {1 - {t^2}}}{ {1 + {t^2}}},dx = \frac{ { - 4t}}{ { { {\left( {1 + {t^2}} \right)}^2}}}dt} t=1+x1x ,x=1+t21t2,dx=(1+t2)24tdt

= ∫ t ⋅ − 4 t ( 1 + t 2 ) 2 1 − t 2 1 + t 2 d t = ∫ − 4 t 2 ( 1 + t 2 ) ( 1 − t 2 ) d t = 2 ∫ 1 1 + t 2 − 1 1 − t 2 d t {\rm{ = }}\int {t \cdot } \frac{ {\frac{ { - 4t}}{ { { {\left( {1 + {t^2}} \right)}^2}}}}}{ {\frac{ {1 - {t^2}}}{ {1 + {t^2}}}}}dt = \int {\frac{ { - 4{t^2}}}{ {\left( {1 + {t^2}} \right)\left( {1 - {t^2}} \right)}}} dt = 2\int {\frac{1}{ {1 + {t^2}}}} - \frac{1}{ {1 - {t^2}}}dt =t1+t21t2(1+t2)24tdt=(1+t2)(1t2)4t2dt=21+t211t21dt

= 2 arctan ⁡ t + ln ⁡ ∣ t − 1 t + 1 ∣ = 2 arctan ⁡ 1 − x 1 + x + ln ⁡ ∣ 1 − x − 1 + x 1 − x + 1 + x ∣ + C = 2\arctan t + \ln \left| {\frac{ {t - 1}}{ {t + 1}}} \right| = 2\arctan \sqrt {\frac{ {1 - x}}{ {1 + x}}} + \ln \left| {\frac{ {\sqrt {1 - x} - \sqrt {1 + x} }}{ {\sqrt {1 - x} + \sqrt {1 + x} }}} \right| + C =2arctant+lnt+1t1=2arctan1+x1x +ln1x +1+x 1x 1+x +C

例题5(较难) ∫ e 2 x + 4 e x − 1 d x \int {\sqrt { {e^{2x}} + 4{e^x} - 1} } dx e2x+4ex1 dx t = e x , d x = 1 t d t {t = {e^x},dx = \frac{1}{t}dt} t=ex,dx=t1dt 即为 ∫ t 2 + 4 t − 1 t d t \int {\frac{ {\sqrt { {t^2} + 4t - 1} }}{t}dt} tt2+4t1 dt

解法一

= t 2 + 4 t − 1 − ∫ t 2 + 2 t − t 2 − 4 t + 1 t 2 t 2 + 4 t − 1 d t    = t 2 + 4 t − 1 + ∫ 2 t − 1 t 2 t 2 + 4 t − 1 d t    = t 2 + 4 t − 1 + ∫ 2 t t 2 + 4 t − 1 d t − ∫ 1 t 2 t 2 + 4 t − 1 d t = t 2 + 4 t − 1 + 4 arctan ⁡ a − ( 4 arctan ⁡ a + 4 a − 2 1 + a 2 )    = t 2 + 4 t − 1 − 2 t + 10 t 2 + 2 t + t t 2 + 4 t − 1 + C \begin{array}{l} = \sqrt { {t^2} + 4t - 1} - \int {\frac{ { {t^2} + 2t - {t^2} - 4t + 1}}{ { {t^2}\sqrt { {t^2} + 4t - 1} }}} dt\\\;\\ = \sqrt { {t^2} + 4t - 1} + \int {\frac{ {2t - 1}}{ { {t^2}\sqrt { {t^2} + 4t - 1} }}} dt\\\;\\ = \sqrt { {t^2} + 4t - 1} + \int {\frac{2}{ {t\sqrt { {t^2} + 4t - 1} }}} dt - \int {\frac{1}{ { {t^2}\sqrt { {t^2} + 4t - 1} }}} dt = \sqrt { {t^2} + 4t - 1} + 4\arctan a - \left( {4\arctan a + \frac{ {4a - 2}}{ {1 + {a^2}}}} \right)\\\;\\ = \sqrt { {t^2} + 4t - 1} - \frac{2}{t} + \frac{ {10}}{ { {t^2} + 2t + t\sqrt { {t^2} + 4t - 1} }} + C \end{array} =t2+4t1 t2t2+4t1 t2+2tt24t+1dt=t2+4t1 +t2t2+4t1 2t1dt=t2+4t1 +tt2+4t1 2dtt2t2+4t1 1dt=t2+4t1 +4arctana(4arctana+1+a24a2)=t2+4t1 t2+t2+2t+tt2+4t1 10+C

t 2 + 4 t − 1 = a − t → t = a 2 + 1 2 a + 4 , a − t = a 2 + 4 a − 1 2 a + 4 , d t = 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a \sqrt { {t^2} + 4t - 1} = a - t \to t = \frac{ { {a^2} + 1}}{ {2a + 4}},a - t = \frac{ { {a^2} + 4a - 1}}{ {2a + 4}},dt = \frac{ {2{a^2} + 8a - 2}}{ { { {\left( {2a + 4} \right)}^2}}}da t2+4t1 =att=2a+4a2+1,at=2a+4a2+4a1,dt=(2a+4)22a2+8a2da (这个方法需要掌握)

∫ 2 t t 2 + 4 t − 1 d t = 2 ∫ 1 a 2 + 1 2 a + 4 ⋅ a 2 + 4 a − 1 2 a + 4 ⋅ 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a = 4 ∫ 1 a 2 + 1 d a = 4 arctan ⁡ a    ∫ 1 t 2 t 2 + 4 t − 1 d t = ∫ 1 ( a 2 + 1 2 a + 4 ) 2 ⋅ a 2 + 4 a − 1 2 a + 4 ⋅ 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a = 4 ∫ a + 2 ( a 2 + 1 ) 2 d a    = 4 ∫ a ( a 2 + 1 ) 2 d a + 8 ∫ 1 ( a 2 + 1 ) 2 d a = 4 arctan ⁡ a + 4 a 1 + a 2 − 2 a 2 + 1 = 4 arctan ⁡ a + 4 a − 2 1 + a 2    4 ∫ a ( a 2 + 1 ) 2 d a = 2 ∫ d ( a 2 + 1 ) ( a 2 + 1 ) 2 = − 2 a 2 + 1    8 ∫ 1 ( a 2 + 1 ) 2 d a 8 ∫ 1 sec ⁡ 4 θ ⋅ sec ⁡ 2 θ d θ = 2 ∫ 1 + cos ⁡ 2 θ d 2 θ = 4 θ + 2 sin ⁡ 2 θ = 4 arctan ⁡ a + 4 a 1 + a 2 \begin{array}{l} \int {\frac{2}{ {t\sqrt { {t^2} + 4t - 1} }}} dt = 2\int {\frac{1}{ {\frac{ { {a^2} + 1}}{ {2a + 4}} \cdot \frac{ { {a^2} + 4a - 1}}{ {2a + 4}}}}} \cdot \frac{ {2{a^2} + 8a - 2}}{ { { {\left( {2a + 4} \right)}^2}}}da = 4\int {\frac{1}{ { {a^2} + 1}}} da = 4\arctan a\\\;\\ \int {\frac{1}{ { {t^2}\sqrt { {t^2} + 4t - 1} }}} dt = \int {\frac{1}{ { { {\left( {\frac{ { {a^2} + 1}}{ {2a + 4}}} \right)}^2} \cdot \frac{ { {a^2} + 4a - 1}}{ {2a + 4}}}}} \cdot \frac{ {2{a^2} + 8a - 2}}{ { { {\left( {2a + 4} \right)}^2}}}da = 4\int {\frac{ {a + 2}}{ { { {\left( { {a^2} + 1} \right)}^2}}}} da\\\;\\ = 4\int {\frac{a}{ { { {\left( { {a^2} + 1} \right)}^2}}}} da + 8\int {\frac{1}{ { { {\left( { {a^2} + 1} \right)}^2}}}} da = 4\arctan a + \frac{ {4a}}{ {1 + {a^2}}} - \frac{2}{ { {a^2} + 1}} = 4\arctan a + \frac{ {4a - 2}}{ {1 + {a^2}}}\\\;\\ 4\int {\frac{a}{ { { {\left( { {a^2} + 1} \right)}^2}}}} da = 2\int {\frac{ {d\left( { {a^2} + 1} \right)}}{ { { {\left( { {a^2} + 1} \right)}^2}}}} = - \frac{2}{ { {a^2} + 1}}\\\;\\ 8\int {\frac{1}{ { { {\left( { {a^2} + 1} \right)}^2}}}} da8\int {\frac{1}{ { { {\sec }^4}\theta }}} \cdot {\sec ^2}\theta d\theta = 2\int {1 + \cos 2\theta } d2\theta = 4\theta + 2\sin 2\theta = 4\arctan a + \frac{ {4a}}{ {1 + {a^2}}} \end{array} tt2+4t1 2dt=22a+4a2+12a+4a2+4a11(2a+4)22a2+8a2da=4a2+11da=4arctanat2t2+4t1 1dt=(2a+4a2+1)22a+4a2+4a11(2a+4)22a2+8a2da=4(a2+1)2a+2da=4(a2+1)2ada+8(a2+1)21da=4arctana+1+a24aa2+12=4arctana+1+a24a24(a2+1)2ada=2(a2+1)2d(a2+1)=a2+128(a2+1)21da8sec4θ1sec2θdθ=21+cos2θd2θ=4θ+2sin2θ=4arctana+1+a24a

解法二(倒代换) x = 1 t , d t = − 1 x 2 d x {x = \frac{1}{t},dt = - \frac{1}{ { {x^2}}}dx} x=t1,dt=x21dx

= ∫ x ⋅ 1 + 4 x − x 2 x 2 d 1 x = t 2 + 4 t − 1 + ∫ x − 2 x 1 + 4 x − x 2 d x    = t 2 + 4 t − 1 + ∫ 1 1 + 4 x − x 2 d x + 2 ∫ − 1 x 1 + 4 x − x 2 d x    = t 2 + 4 t − 1 + ∫ 1 1 + 4 x − x 2 d x + 2 ∫ − 1 x 2 1 x 2 + 4 x − 1 d x    = t 2 + 4 t − 1 + 2 ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ + arcsin ⁡ ( 1 − 2 t 5 t ) + C \begin{array}{l} {\rm{ = }}\int {x \cdot \sqrt {\frac{ {1 + 4x - {x^2}}}{ { {x^2}}}} } d\frac{1}{x} = \sqrt { {t^2} + 4t - 1} + \int {\frac{ {x - 2}}{ {x\sqrt {1 + 4x - {x^2}} }}} dx\\\;\\ = \sqrt { {t^2} + 4t - 1} + \int {\frac{1}{ {\sqrt {1 + 4x - {x^2}} }}} dx + 2\int {\frac{ { - 1}}{ {x\sqrt {1 + 4x - {x^2}} }}} dx\\\;\\ = \sqrt { {t^2} + 4t - 1} + \int {\frac{1}{ {\sqrt {1 + 4x - {x^2}} }}} dx + 2\int {\frac{ {\frac{ { - 1}}{ { {x^2}}}}}{ {\sqrt {\frac{1}{ { {x^2}}} + \frac{4}{x} - 1} }}} dx\\\;\\ = \sqrt { {t^2} + 4t - 1} + 2\ln \left| {t + 2 + \sqrt { {t^2} + 4t - 1} } \right| + \arcsin \left( {\frac{ {1 - 2t}}{ {\sqrt 5 t}}} \right){\rm{ + }}C \end{array} =xx21+4xx2 dx1=t2+4t1 +x1+4xx2 x2dx=t2+4t1 +1+4xx2 1dx+2x1+4xx2 1dx=t2+4t1 +1+4xx2 1dx+2x21+x41 x21dx=t2+4t1 +2lnt+2+t2+4t1 +arcsin(5 t12t)+C

= t 2 + 4 t − 1 + 2 ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ − arctan ⁡ ( 2 t − 1 t 2 + 4 t − 1 ) + C = \sqrt { {t^2} + 4t - 1} + 2\ln \left| {t + 2 + \sqrt { {t^2} + 4t - 1} } \right| - \arctan \left( {\frac{ {2t - 1}}{ {\sqrt { {t^2} + 4t - 1} }}} \right) + C =t2+4t1 +2lnt+2+t2+4t1 arctan(t2+4t1 2t1)+C

其中 ∫ 1 1 + 4 x − x 2 d x = ∫ 1 5 − ( x − 2 ) 2 d x = arcsin ⁡ ( x − 2 5 ) = arcsin ⁡ ( 1 − 2 t 5 t ) \int {\frac{1}{ {\sqrt {1 + 4x - {x^2}} }}} dx = \int {\frac{1}{ {\sqrt {5 - { {\left( {x - 2} \right)}^2}} }}dx} = \arcsin \left( {\frac{ {x - 2}}{ {\sqrt 5 }}} \right) = \arcsin \left( {\frac{ {1 - 2t}}{ {\sqrt 5 t}}} \right) 1+4xx2 1dx=5(x2)2 1dx=arcsin(5 x2)=arcsin(5 t12t)

∫ − 1 x 2 1 x 2 + 4 x − 1 d x = ∫ 1 ( 1 x + 2 ) 2 − 5 d 1 x    = ∫ d t ( t + 2 ) 2 − 5 \begin{array}{l} \int {\frac{ {\frac{ { - 1}}{ { {x^2}}}}}{ {\sqrt {\frac{1}{ { {x^2}}} + \frac{4}{x} - 1} }}} dx = \int {\frac{1}{ {\sqrt { { {\left( {\frac{1}{x} + 2} \right)}^2} - 5} }}} d\frac{1}{x}\\\;\\ = \int {\frac{ {dt}}{ {\sqrt { { {\left( {t + 2} \right)}^2} - 5} }}} \end{array} x21+x41 x21dx=(x1+2)25 1dx1=(t+2)25 dt

t + 2 = 5 sec ⁡ x , d t = 5 sec ⁡ x tan ⁡ x d x {t + 2 = \sqrt 5 \sec x,dt = \sqrt 5 \sec x\tan xdx} t+2=5 secx,dt=5 secxtanxdx

∫ sec ⁡ x d x = l n ∣ sec ⁡ x + tan ⁡ x ∣ = ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ \begin{array}{l} \int {\sec xdx} = ln\left| {\sec x + \tan x} \right| = \ln \left| {t + 2 + \sqrt { {t^2} + 4t - 1} } \right|\end{array} secxdx=lnsecx+tanx=lnt+2+t2+4t1

练习题1 ∫ 1 + x + x 2 x \int {\frac{ {\sqrt { {\rm{1 + }}x + {x^2}} }}{x}} x1+x+x2

3. 定积分

3.1 积分定义解题

例1:(定义法求积分 ∫ a b 1 x d x \int_a^b {\frac{1}{x}} dx abx1dx

解:令 x i = a ( b a ) i n , Δ x = x i + 1 − x i = a ( b a ) i n [ ( b a ) 1 n − 1 ] {x_i} = a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}},\Delta x = {x_{i + 1}} - {x_i} = a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}}\left[ { { {\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right] xi=a(ab)ni,Δx=xi+1xi=a(ab)ni[(ab)n11]

= lim ⁡ n → ∞ ∑ i = 0 n 1 a ( b a ) i n ⋅ a ( b a ) i n [ ( b a ) 1 n − 1 ]    = lim ⁡ n → ∞ n ⋅ [ ( b a ) 1 n − 1 ] = lim ⁡ n → ∞ [ ( b a ) 1 n − 1 ] 1 n ( a x − 1 ∼ x ln ⁡ a )    = lim ⁡ n → ∞ 1 n ln ⁡ ( b a ) 1 n = ln ⁡ ( b a ) \begin{array}{l} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 0}^n {\frac{1}{ {a{ {\left( {\frac{b}{a}} \right)}^{\frac{i}{n}}}}}} \cdot a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}}\left[ { { {\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right]\\\;\\ = \mathop {\lim }\limits_{n \to \infty } n \cdot \left[ { { {\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right] = \mathop {\lim }\limits_{n \to \infty } \frac{ {\left[ { { {\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right]}}{ {\frac{1}{n}}}\left( { {a^x} - 1 \sim x\ln a} \right)\\\;\\ = \mathop {\lim }\limits_{n \to \infty } \frac{ {\frac{1}{n}\ln \left( {\frac{b}{a}} \right)}}{ {\frac{1}{n}}} = \ln \left( {\frac{b}{a}} \right) \end{array} =nlimi=0na(ab)ni1a(ab)ni[(ab)n11]=nlimn[(ab)n11]=nlimn1[(ab)n11](ax1xlna)=nlimn1n1ln(ab)=ln(ab)

例2:(利用积分定义求极限

I = lim ⁡ n → ∞ ( sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n )    = lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i ≠ f ( i n ) ⋅ 1 n    sin ⁡ π i n n + 1 < sin ⁡ i π n n + 1 i < sin ⁡ π i n n ( i = 1 , 2 , ⋯   , n )    ∴ lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n = ∫ 0 1 sin ⁡ π x d x = − 1 π cos ⁡ π x ∣ 0 1 = 2 π    lim ⁡ n → ∞ n n + 1 ⋅ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n = lim ⁡ n → ∞ n n + 1 ⋅ lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n    = 1 ⋅ ∫ 0 1 sin ⁡ π x d x = 2 π \begin{array}{l} {\rm{I}} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{ {\sin \frac{\pi }{n}}}{ {n + 1}} + \frac{ {\sin \frac{ {2\pi }}{n}}}{ {n + \frac{1}{2}}} + \cdots + \frac{ {\sin \frac{ {n\pi }}{n}}}{ {n + \frac{1}{n}}}} \right)\\\;\\ = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{ {\sin \frac{ {i\pi }}{n}}}{ {n + \frac{1}{i}}}} \ne f\left( {\frac{i}{n}} \right) \cdot \frac{1}{n}\\\;\\ \frac{ {\sin \pi \frac{i}{n}}}{ {n + 1}} < \frac{ {\sin \frac{ {i\pi }}{n}}}{ {n + \frac{1}{i}}} < \frac{ {\sin \pi \frac{i}{n}}}{n}\left( {i = 1,2, \cdots ,n} \right)\\\;\\ \therefore \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n} = \int_0^1 {\sin \pi x} dx = - \frac{1}{\pi }\cos \pi x|_0^1 = \frac{2}{\pi }\\\;\\ \mathop {\lim }\limits_{n \to \infty } \frac{n}{ {n + 1}} \cdot \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n} = \mathop {\lim }\limits_{n \to \infty } \frac{n}{ {n + 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n}\\\;\\ = 1 \cdot \int_0^1 {\sin \pi x} dx = \frac{2}{\pi } \end{array} I=nlim(n+1sinnπ+n+21sinn2π++n+n1sinnnπ)=nlimi=1nn+i1sinniπ=f(ni)n1n+1sinπni<n+i1sinniπ<nsinπni(i=1,2,,n)nlimi=1nsinπnin1=01sinπxdx=π1cosπx01=π2nlimn+1ni=1nsinπnin1=nlimn+1nnlimi=1nsinπnin1=101sinπxdx=π2

有夹逼定理,得 I = lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i = 2 π {\rm{I}} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{ {\sin \frac{ {i\pi }}{n}}}{ {n + \frac{1}{i}}}} = \frac{2}{\pi } I=nlimi=1nn+i1sinniπ=π2

练习题2

( 1 ) . lim ⁡ n → ∞ ln ⁡ ( 1 + 1 n ) 2 ( 1 + 2 n ) 2 ⋯ ( 1 + n n ) 2 n ( 2 ) . lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) \begin{array}{l} \left( {\rm{1}} \right){\rm{.}}\mathop {\lim }\limits_{ {\rm{n}} \to \infty } \ln \sqrt[n]{ { { {\left( {1 + \frac{1}{n}} \right)}^2}{ {\left( {1 + \frac{2}{n}} \right)}^2} \cdots { {\left( {1 + \frac{n}{n}} \right)}^2}}}\\ \left( 2 \right).\mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{ {\sqrt { {n^2} + 1} }} + \frac{1}{ {\sqrt { {n^2} + {2^2}} }} + \cdots + \frac{1}{ {\sqrt { {n^2} + {n^2}} }}} \right) \end{array} (1).nlimlnn(1+n1)2(1+n2)2(1+nn)2 (2).nlim(n2+1 1+n2+22 1++n2+n2 1)

3.2 积分技巧解题

例题1 ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x \int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx 04πln(1+tanx)dx

解:

= ∫ 0 π 4 ln ⁡ ( 1 + t a n ( π 4 − x ) ) d x    = ∫ 0 π 4 ln ⁡ ( 2 1 + tan ⁡ x ) d x    = ∫ 0 π 4 ln ⁡ 2 d x − ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x → 原 式 = 1 2 ∫ 0 π 4 ln ⁡ 2 d x = π 8 ln ⁡ 2 \begin{array}{l} = \int_0^{\frac{\pi }{4}} {\ln (1 + tan(\frac{\pi }{4} - x))} dx\\\;\\ = \int_0^{\frac{\pi }{4}} {\ln (\frac{2}{ {1 + \tan x}})} dx\\\;\\ = \int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ - }}\int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx \to 原式 {\rm{ = }}\frac{ {\rm{1}}}{ {\rm{2}}}\int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ = }}\frac{\pi }{ {\rm{8}}}\ln 2 \end{array} =04πln(1+tan(4πx))dx=04πln(1+tanx2)dx=04πln2dx04πln(1+tanx)dx=2104πln2dx=8πln2

例题2 I = ∫ 2 4 x + 3 x + 3 + 9 − x d x I{\rm{ = }}\int_{\rm{2}}^{\rm{4}} {\frac{ {\sqrt {x + 3} }}{ {\sqrt {x + 3} + \sqrt {9 - x} }}} dx I=24x+3 +9x x+3 dx

x + 3 = 9 − t , d x = − d t x + 3 = 9 - t,dx = - dt x+3=9t,dx=dt

I = ∫ 2 4 x + 3 x + 3 + 9 − x d x = − ∫ 4 2 9 − t 9 − t + 3 + t d t = ∫ 2 4 9 − x 9 − x + 3 + x d x    = 1 2 [ ∫ 2 4 x + 3 x + 3 + 9 − x d x + ∫ 2 4 9 − x 9 − x + 3 + x d x ] = 1 2 ∫ 2 4 d x = 1 \begin{array}{l} I = \int_2^4 {\frac{ {\sqrt {x + 3} }}{ {\sqrt {x + 3} + \sqrt {9 - x} }}dx = - \int_4^2 {\frac{ {\sqrt {9 - t} }}{ {\sqrt {9 - t} + \sqrt {3 + t} }}} } dt = \int_2^4 {\frac{ {\sqrt {9 - x} }}{ {\sqrt {9 - x} + \sqrt {3 + x} }}} dx\\\;\\ = \frac{1}{2}\left[ {\int_2^4 {\frac{ {\sqrt {x + 3} }}{ {\sqrt {x + 3} + \sqrt {9 - x} }}dx + } \int_2^4 {\frac{ {\sqrt {9 - x} }}{ {\sqrt {9 - x} + \sqrt {3 + x} }}} dx} \right] = \frac{1}{2}\int_2^4 {dx} = 1 \end{array} I=24x+3 +9x x+3 dx=429t +3+t 9t dt=249x +3+x 9x dx=21[24x+3 +9x x+3 dx+249x +3+x 9x dx]=2124dx=1

例题3 ∫ 0 a a − x x + a d x \int_{\rm{0}}^{\rm{a}} {\sqrt {\frac{ {a - x}}{ {x + a}}} } dx 0ax+aax dx

解:令 x = a cos ⁡ t , t ∈ ( 0 , π 2 ) , d x = − a sin ⁡ t d t { {\rm{x}} = a\cos t,t \in (0,\frac{\pi }{2})},{dx = - a\sin tdt} x=acost,t(0,2π),dx=asintdt a − x x + a = 1 − cos ⁡ t 1 + cos ⁡ t = sin ⁡ 2 t 2 cos ⁡ 2 t 2 = tan ⁡ t 2 = sin ⁡ t 1 + cos ⁡ t = 1 − cos ⁡ t sin ⁡ t \sqrt {\frac{ {a - x}}{ {x + a}}} = \sqrt {\frac{ {1 - \cos t}}{ {1 + \cos t}}} = \sqrt {\frac{ { { {\sin }^2}\frac{t}{2}}}{ { { {\cos }^2}\frac{t}{2}}}} = \tan \frac{t}{2} = \frac{ {\sin t}}{ {1 + \cos t}} = \frac{ {1 - \cos t}}{ {\sin t}} x+aax =1+cost1cost =cos22tsin22t =tan2t=1+costsint=sint1cost (必须会)

= ∫ π 2 0 tan ⁡ t 2 ( − a s i n t ) d t    = a ∫ 0 π 2 sin ⁡ 2 t 1 + cos ⁡ t d t    = a ∫ 0 π 2 1 − cos ⁡ 2 t 1 + cos ⁡ t d t    = a ∫ 0 π 2 1 + cos ⁡ t d t    = π 2 a + a \begin{array}{l} = \int_{\frac{\pi }{2}}^0 {\tan \frac{t}{2}} ( - asint)dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {\frac{ { { {\sin }^2}t}}{ {1 + \cos t}}} dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {\frac{ {1 - { {\cos }^2}t}}{ {1 + \cos t}}} dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {1 + \cos t} dt\\\;\\ = \frac{\pi }{2}a + a \end{array} =2π0tan2t(asint)dt=a02π1+costsin2tdt=a02π1+cost1cos2tdt=a02π1+costdt=2πa+a

反常积分

∫ 0 ∞ 1 1 + x 4 d x \int_{\rm{0}}^\infty {\frac{ {\rm{1}}}{ { {\rm{1 + }}{x^4}}}} dx 01+x41dx t = 1 x {t = \frac{1}{x}} t=x1

∫ 0 ∞ t 2 1 + t 4 d t = ∫ 0 ∞ x 2 1 + x 4 d x = 1 2 ∫ 0 ∞ 1 + x 2 1 + x 4 d x    = 1 2 ∫ 0 ∞ d ( x − 1 x ) ( x − 1 x ) 2 + 2 = 1 2 2 arctan ⁡ 1 2 ( x − 1 x ) ∣ 0 ∞ = π 4 2 − ( − π 4 2 ) = π 2 2 \int_{\rm{0}}^\infty {\frac{ { {t^2}}}{ { {\rm{1 + }}{t^4}}}} dt = \int_{\rm{0}}^\infty {\frac{ { {x^2}}}{ { {\rm{1 + }}{x^4}}}} dx = \frac{1}{2}\int_0^\infty {\frac{ {1 + {x^2}}}{ {1 + {x^4}}}} dx\\\;\\ = \frac{1}{2}\int_0^\infty {\frac{ {d\left( {x - \frac{1}{x}} \right)}}{ { { {\left( {x - \frac{1}{x}} \right)}^2} + 2}}} = \left. {\frac{1}{ {2\sqrt 2 }}\arctan \frac{1}{ {\sqrt 2 }}\left( {x - \frac{1}{x}} \right)} \right|_0^\infty = \frac{\pi }{ {4\sqrt 2 }} - \left( { - \frac{\pi }{ {4\sqrt 2 }}} \right) = \frac{\pi }{ {2\sqrt 2 }} 01+t4t2dt=01+x4x2dx=2101+x41+x2dx=210(xx1)2+2d(xx1)=22 1arctan2 1(xx1)0=42 π(42 π)=22 π

(记忆)

I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = ∫ 0 π 2 sin ⁡ n − 1 x d ( − cos ⁡ x )    = [ − sin ⁡ n − 1 x cos ⁡ x ] 0 π 2 + ∫ 0 π 2 cos ⁡ x d ( sin ⁡ n − 1 x ) = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x cos ⁡ 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x ( 1 − sin ⁡ 2 x ) d x    = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x d x → I n = ( n − 1 ) I n − 2 − ( n − 1 ) I n \begin{array}{l} {I_n} = \int_0^{\frac{\pi }{2}} { { {\sin }^n}x} dx = \int_0^{\frac{\pi }{2}} { { {\cos }^n}x} dx = \int_0^{\frac{\pi }{2}} { { {\sin }^{n - 1}}x} d\left( { - \cos x} \right)\\\;\\ = \left[ { - { {\sin }^{n - 1}}x\cos x} \right]_0^{\frac{\pi }{2}} + \int_0^{\frac{\pi }{2}} {\cos x} d\left( { { {\sin }^{n - 1}}x} \right)\\ = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} { { {\sin }^{n - 2}}x} {\cos ^2}xdx = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} { { {\sin }^{n - 2}}x} \left( {1 - { {\sin }^2}x} \right)dx\\\;\\ = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} { { {\sin }^{n - 2}}x} dx - \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} { { {\sin }^n}x} dx \to {I_n} = \left( {n - 1} \right){I_{n - 2}} - \left( {n - 1} \right){I_n}\end{array} In=02πsinnxdx=02πcosnxdx=02πsinn1xd(cosx)=[sinn1xcosx]02π+02πcosxd(sinn1x)=(n1)02πsinn2xcos2xdx=(n1)02πsinn2x(1sin2x)dx=(n1)02πsinn2xdx(n1)02πsinnxdxIn=(n1)In2(n1)In

I n = n − 1 n I n − 2 → n 为 奇 数 I 2 m + 1 = 2 m ( 2 m − 2 ) ⋯ 42 ( 2 m + 1 ) ( 2 m − 1 ) ⋯ 31 = ( 2 m ) ! ! ( 2 m + 1 ) ! ! {I_n} = \frac{ {n - 1}}{n}{I_{n - 2}} \to n 为奇数{I_{2m + 1}} = \frac{ {2m\left( {2m - 2} \right) \cdots 42}}{ {\left( {2m + 1} \right)\left( {2m - 1} \right) \cdots 31}} = \frac{ {\left( {2m} \right)!!}}{ {\left( {2m + 1} \right)!!}} In=nn1In2nI2m+1=(2m+1)(2m1)312m(2m2)42=(2m+1)!!(2m)!!

n 为 偶 数 I 2 m = ( 2 m − 1 ) ( 2 m − 3 ) ⋯ 31 2 m ( 2 m − 2 ) ⋯ 42 = ( 2 m − 1 ) ! ! ( 2 m ) ! ! π 2 n为偶数{I_{2m}} = \frac{ {\left( {2m - 1} \right)\left( {2m - 3} \right) \cdots 31}}{ {2m\left( {2m - 2} \right) \cdots 42}} = \frac{ {\left( {2m - 1} \right)!!}}{ {\left( {2m} \right)!!}}\frac{\pi }{2} nI2m=2m(2m2)42(2m1)(2m3)31=(2m)!!(2m1)!!2π

练习题3

(1) ∫ 0 a x 2 a − x a + x d x \int_0^a { {x^2}\sqrt {\frac{ {a - x}}{ {a + x}}} } dx 0ax2a+xax dx                (2) ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2 d x \int_0^1 {\frac{ {\ln \left( {1 + x} \right)}}{ {1 + {x^2}}}} dx 011+x2ln(1+x)dx

4. 练习解答

提示 题目解析都是由本人自己所写希望会有不同的做法与我分享,这里就不把答案直接放出来,本人会将答案放在另一篇blogs,等大家做完了点击这里一个链接:答案

猜你喜欢

转载自blog.csdn.net/cugautozp/article/details/109905946