linux篇【16】:传输层协议<后序>

目录

六.滑动窗口

(1)发送缓冲区结构

(2)滑动窗口介绍

(3)滑动窗口不一定只会向右移动。滑动窗口可以变大也可以变小。

(4)那么如果出现了丢包, 如何进行重传? 这里分两种情况讨论.

①情况一: 数据包已经抵达, ACK被丢了.

②情况二: 数据包就直接丢了."快重传"

如何理解发送缓冲区发送完毕数据?

七.流量控制

八.拥塞控制

1.网络拥塞:传输的网络数据太多,大量丟包——网络出现问题

2.怎么办?——慢启动 机制

拥塞控制算法

为何选择指数级增长:

九.延迟应答

十.捎带应答——tcp应答真相

TCP小结

十一.面向字节流

1.面向字节流

2.粘包问题

5.TCP/UDP对比


六.滑动窗口(紧接上序)

刚才我们讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段。这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返的时间较长的时候

 既然这样一发一收的方式性能较低, 那么我们一次发送多条数据, 就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了).

收到第一个ACK后, 滑动窗口向后移动, 继续发送第五个段的数据; 依次类推;

操作系统内核为了维护这个滑动窗口, 需要开辟 发送缓冲区 来记录当前还有哪些数据没有应答; 只有确认应答过的数据, 才能从缓冲区删掉; 窗口越大, 则网络的吞吐率就越高;

 

(1)发送缓冲区结构

发送出去的数据,在没有得到"答案”(发送成功 / 发送失败)的情况下,必须被保留在发送缓冲区中,以便于支持超时重传。

(2)滑动窗口介绍

滑动窗口本质上是 发送缓冲区中一个部分的起始指针和结束指针,滑动窗口向右滑动本质就是指针的右移(这里虽然是int类型,只要它指向一个位置,网络里就叫他指针)

目的是让数据批量化发送,一发一收的方式性能较低, 我们一次发送多条数据, 就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了).

 tcp的发送缓冲区其实是被设计成为环状结构的,所以不必担心滑动窗口越界

例如:这里客户端发送了4个报文,当客户端收到 2001 32位确认序号 的应答,表示1001~2001已传输成功,则start_index 会向右走

(3)滑动窗口不一定只会向右移动。滑动窗口可以变大也可以变小。

滑动窗口的大小由谁决定?——目前:是由对方的接受的能力决定!.我收到的TCP数据报头中的窗口大小!

滑动窗口正常情况是向右移动,说明对方接受能力稳定,我在发,对方也在取。如果对方不接收或16位窗口大小变小了,说明对方接受能力变小,滑动窗口会变小,即:start_index 会向右走,end_index不动;如果对方返回的16位窗口大小变大了,说明对方接受能力变大,滑动窗口会变大,即:start_index不动 ,end_index向右走。

(4)那么如果出现了丢包, 如何进行重传? 这里分两种情况讨论.

①情况一: 数据包已经抵达, ACK被丢了.

这种情况下, 部分ACK丢了并不要紧, 因为可以通过后续的较大的ACK进行确认,只要大的到了,例如只要返回的ACK6001得到了,说明6001之前的数据都收到了,只不过丢失了部分应答而已;如果较大的ACK丢失,那就只能超时重传了

②情况二: 数据包就直接丢了."快重传"

活动窗口不会跳过没有确认成功的数据继续滑动

当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001" 一样;

如果发送端主机连续三次收到了同样一个 "1001" 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;

这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001了(因为2001 - 7000)接收端其实之前就已经收到了, 被放到了接收端操作系统内核的接收缓冲区中;

这种机制被称为 "高速重发控制"(也叫 "快重传").

如何理解发送缓冲区发送完毕数据?

start_index向右移动而已,数据就从 “已经发送, 但是还没有得到响应结果的区域” 放到了“已经发送&&收到确认应答” 区域,不用做什么处理。

七.流量控制

接收端处理数据的速度是有限的. 如果发送端发的太快, 导致接收端的缓冲区被打满, 这个时候如果发送端继续发送,就会造成丢包, 继而引起丢包重传等等一系列连锁反应.因此TCP支持根据接收端的处理能力, 来决定发送端的发送速度. 这个机制就叫做流量控制(Flow Control);接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 "窗口大小" 字段, 通过ACK端通知发送端;窗口大小字段越大, 说明网络的吞吐量越高;接收端一旦发现自己的缓冲区快满了, 就会将窗口大小设置成一个更小的值通知给发送端;发送端接受到这个窗口之后, 就会减慢自己的发送速度;如果接收端缓冲区满了, 就会将窗口置为0; 这时发送方不再发送数据, 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端

接收端如何把窗口大小告诉发送端呢? 回忆我们的TCP首部中, 有一个16位窗口字段, 就是存放了窗口大小信息;

那么问题来了, 16位数字最大表示65535, 那么TCP窗口最大就是65535字节么?

实际上, TCP首部40字节选项中还包含了一个窗口扩大因子M, 实际窗口大小是 窗口字段的值左移 M 位;

八.拥塞控制

1.网络拥塞:传输的网络数据太多,大量丟包——网络出现问题

2.怎么办?——慢启动 机制

虽然TCP有了滑动窗口这个大杀器, 能够高效可靠的发送大量的数据. 但是如果在刚开始阶段就发送大量的数据, 仍然可能引发问题。因为网络上有很多的计算机, 可能当前的网络状态就已经比较拥堵. 在不清楚当前网络状态下, 贸然发送大量的数据,是很有可能引起雪上加霜的。

不能重传——因为网络连接大量的发送方,网络出现问题则大部分发送方都丢包,如果这些发送方再都超时重传,则会让本就不堪重负的网络雪上加霜,让网络进一步瘫痪。)

TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

        此处引入一个概念程为拥塞窗口,定义:在拥塞窗口发送数据量以内不会拥塞,超过可能会引发拥塞问题。

        发送开始的时候, 定义拥塞窗口大小为1;

        每次收到一个ACK应答, 拥塞窗口加1;

        每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的窗口;

                一次向目标主机发送数据的量= min(对方的接受能力,网络承受能力)       
                   即:            滑动窗口的大小= min(对方的窗口大小,拥塞窗口)

像上面这样的拥塞窗口增长速度, 是指数级别的. "慢启动" 只是指初使时慢, 但是增长速度非常快.

拥塞控制算法

        为了不增长的那么快, 因此不能使拥塞窗口单纯的加倍.

        此处引入一个叫做慢启动的阈值

        当拥塞窗口超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长

        当TCP开始启动的时候, 慢启动阈值等于窗口最大值;

        在每次超时重发的时候, 慢启动阈值会变成原来造成拥塞的窗口大小的一半, 同时拥塞窗口置回1;

少量的丢包, 我们仅仅是触发超时重传; 大量的丢包, 我们就认为网络拥塞;

当TCP通信开始后, 网络吞吐量会逐渐上升; 随着网络发生拥堵, 吞吐量会立刻下降;

拥塞控制, 归根结底是TCP协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案.

TCP拥塞控制这样的过程, 就好像 热恋的感觉

为何选择指数级增长:

指数增长前期慢,意味着前期都可以发送少量的数据,但增长速度快
指数增长前期慢+探路后,我们要尽快恢复网络通信的正常速度(
网络出现拥塞,最想做什么?尽快恢复
增长到一定程度,让拥塞窗口再大也没意义了,就让他正常的线性增长

 

九.延迟应答

发送方发送数据的发送能力——取决于活动窗口大小——取决于对方剩余空间的大小——取决于r上层能不能尽快取走数据

延迟应答:如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小,接收方就选择“等一等”的方式,在这一段时间内,上层可能会取走数据,则下一次发送方可以传大块数据了,这就叫延迟应答策略

例子:假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K;

        但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;

        在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;

        如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;

一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输

效率;

那么所有的包都可以延迟应答么? 肯定也不是;

        数量限制: 每隔N个包就应答一次;

        时间限制: 超过最大延迟时间就应答一次;

具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms;

十.捎带应答——tcp应答真相

在延迟应答的基础上, 我们发现, 很多情况下, 客户端服务器在应用层也是 "一发一收" 的. 意味着客户端给服务器说

了 "How are you", 服务器也会给客户端回一个 "Fine, thank you";

那么这个时候ACK就可以搭顺风车,ACK和服务器回应的 "Fine, thank you" 一起回给客户端

即:四次挥手有概率会被压缩成三次回收,第二次ACK和FIN同时返回给客户端。(解释:当客户端向服务器发起断开连接请求FIN时,服务器需要返回ACK确认同时也正好想向客户端发起断开请求,则ACK和FIN同时返回给客户端。)

TCP小结

为什么TCP这么复杂? 因为要保证可靠性, 同时又尽可能的提高性能.        

可靠性:

        校验和:保证数据不会出现偏差,例如比特位翻转

        序列号(按序到达)

        确认应答(三.4.)

        超时重发(四.5.)

        连接管理(五.)

        流量控制(七.)

        拥塞控制(八.)

提高性能:

        滑动窗口

        快速重传(六.(4).②)

        延迟应答

        捎带应答

其他:

定时器(超时重传定时器, 保活定时器, TIME_WAIT定时器等)

十一.面向字节流

1.面向字节流

创建一个TCP的socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;

        ●调用write时, 数据会先写入发送缓冲区中;

        ●如果发送的字节数太长, 会被拆分成多个TCP的数据包发出;

        ●如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出去;

        ●接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;

        ●然后应用程序可以调用read从接收缓冲区拿数据;

        ●另一方面, TCP的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工

由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:

        ●写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;

        ●读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次read一个字节, 重复100次;即:面向字节流是 发送数据的方式和数据的格式完全无关系。tcp是面向字节流的,不关心任何的数据格式,但是要正确使用这个数据,必须得有特定的格式!谁来解释这个格式呢?只能是应用层进行处理!(所以我们自定义了协议decode,encode这一系列操作)

2.粘包问题

首先要明确, 粘包问题中的 "包" , 是指的应用层的数据包.

在TCP的协议头中, 没有如同UDP一样的 "报文长度" 这样的字段, 但是有一个序号这样的字段.

站在传输层的角度, TCP是一个一个报文过来的. 按照序号排好序放在缓冲区中.

站在应用层的角度, 看到的只是一串连续的字节数据.

那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包.

那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界—定制协议.(一般如何解决? 明确报文和报文的边界! !)

例如http应用层协议,利用空行来做分隔符,读取到报头后,找到里面contend-length 字段再读取出有效载荷。

对于定长的包, 保证每次都按固定大小读取即可; 例如上面的Request结构, 是固定大小的, 那么就从缓冲

区从头开始按sizeof(Request)依次读取即可;

对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;

对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔

符不和正文冲突即可);

思考: 对于UDP协议来说, 是否也存在 "粘包问题" 呢?

对于UDP, 如果还没有上层交付数据, UDP的报文长度仍然在. 同时, UDP是一个一个把数据交付给应用层. 就有很明确的数据边界.UDP报头是8字节定长,且16位UDP长度是整个报文长度,有效载荷长度UDP是知道的,UDP向应用层交付不会出现粘包问题;而tcp没有有效载荷字段,因为他自己也不知道有效载荷大小,只知道报头大小,交付时,去掉报头,剩下有效载荷只能通过上层应用层定的协议来得出真正的有效载荷

站在应用层的站在应用层的角度, 使用UDP的时候, 要么收到完整的UDP报文, 要么不收. 不会出现"半个"的情况.

3.TCP异常情况

进程终止: 进程终止会释放文件描述符, 仍然可以发送FIN. 和正常关闭没有什么区别.

机器重启: 和进程终止的情况相同.

机器掉电/网线断开: 接收端认为连接还在, 一旦接收端有写入操作, 接收端发现连接已经不在了, 就会进行reset. 即

使没有写入操作, TCP自己也内置了一个保活定时器, 会定期询问对方是否还在. 如果对方不在, 也会把连接释放.

另外, 应用层的某些协议, 也有一些这样的检测机制. 例如HTTP长连接中, 也会定期检测对方的状态. 例如QQ, 在QQ

断线之后, 也会定期尝试重新连接.

4.基于TCP应用层协议

HTTP

HTTPS

SSH

Telnet

FTP

SMTP

当然, 也包括你自己写TCP程序时自定义的应用层协议;

5.TCP/UDP对比

我们说了TCP 是可靠连接 , 那么是不是 TCP 一定就优于 UDP ? TCP UDP 之间的优点和缺点 , 不能简单 , 绝对的进行
比较
TCP 用于可靠传输的情况 , 应用于文件传输 , 重要状态更新等场景 ;
UDP 用于对高速传输和实时性要求较高的通信领域 , 例如 , 早期的 QQ, 视频传输等 . 另外 UDP 可以用于广
;
归根结底 , TCP UDP 都是程序员的工具 , 什么时机用 , 具体怎么用 , 还是要根据具体的需求场景去判定 .
UDP 实现可靠传输 ( 经典面试题 )
参考 TCP 的可靠性机制 , 在应用层实现类似的逻辑 ;
例如 :
引入序列号 , 保证数据顺序 ;
引入确认应答 , 确保对端收到了数据 ;
引入超时重传 , 如果隔一段时间没有应答 , 就重发数据 ;
......

猜你喜欢

转载自blog.csdn.net/zhang_si_hang/article/details/129347282