知识蒸馏算法汇总

知识蒸馏有两大类:一类是logits蒸馏,另一类是特征蒸馏。logits蒸馏指的是在softmax时使用较高的温度系数,提升负标签的信息,然后使用Student和Teacher在高温softmax下logits的KL散度作为loss。中间特征蒸馏就是强迫Student去学习Teacher某些中间层的特征,直接匹配中间的特征或学习特征之间的转换关系。例如,在特征No.1和No.2中间,知识可以表示为如何模做两者中间的转化,可以用一个矩阵让学习者产生这个矩阵,学习者和转化之间的学习关系。
这篇文章汇总了常用的知识蒸馏的论文和代码,方便后续的学习和研究。

1、Logits

论文链接:https://proceedings.neurips.cc/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class Logits(nn.Module):
	'''
	Do Deep Nets Really Need to be Deep?
	http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
	'''
	def __init__(self):
		super(Logits, self).__init__()

	def forward(self, out_s, out_t):
		loss = F.mse_loss(out_s, out_t)

		return loss

2、ST

论文链接:https://arxiv.org/pdf/1503.02531.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class SoftTarget(nn.Module):
	'''
	Distilling the Knowledge in a Neural Network
	https://arxiv.org/pdf/1503.02531.pdf
	'''
	def __init__(self, T):
		super(SoftTarget, self).__init__()
		self.T = T

	def forward(self, out_s, out_t):
		loss = F.kl_div(F.log_softmax(out_s/self.T, dim=1),
						F.softmax(out_t/self.T, dim=1),
						reduction='batchmean') * self.T * self.T

		return loss

在这里插入图片描述

3、AT

论文链接:https://arxiv.org/pdf/1612.03928.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
AT with sum of absolute values with power p
'''
class AT(nn.Module):
	'''
	Paying More Attention to Attention: Improving the Performance of Convolutional
	Neural Netkworks wia Attention Transfer
	https://arxiv.org/pdf/1612.03928.pdf
	'''
	def __init__(self, p):
		super(AT, self).__init__()
		self.p = p

	def forward(self, fm_s, fm_t):
		loss = F.mse_loss(self.attention_map(fm_s), self.attention_map(fm_t))

		return loss

	def attention_map(self, fm, eps=1e-6):
		am = torch.pow(torch.abs(fm), self.p)
		am = torch.sum(am, dim=1, keepdim=True)
		norm = torch.norm(am, dim=(2,3), keepdim=True)
		am = torch.div(am, norm+eps)

		return am

4、Fitnet

论文链接:https://arxiv.org/pdf/1412.6550.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class Hint(nn.Module):
	'''
	FitNets: Hints for Thin Deep Nets
	https://arxiv.org/pdf/1412.6550.pdf
	'''
	def __init__(self):
		super(Hint, self).__init__()

	def forward(self, fm_s, fm_t):
		loss = F.mse_loss(fm_s, fm_t)

		return loss

5、NST

论文链接:https://arxiv.org/pdf/1707.01219.pdf

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
NST with Polynomial Kernel, where d=2 and c=0
'''
class NST(nn.Module):
	'''
	Like What You Like: Knowledge Distill via Neuron Selectivity Transfer
	https://arxiv.org/pdf/1707.01219.pdf
	'''
	def __init__(self):
		super(NST, self).__init__()

	def forward(self, fm_s, fm_t):
		fm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1)
		fm_s = F.normalize(fm_s, dim=2)

		fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1)
		fm_t = F.normalize(fm_t, dim=2)

		loss = self.poly_kernel(fm_t, fm_t).mean() \
			 + self.poly_kernel(fm_s, fm_s).mean() \
			 - 2 * self.poly_kernel(fm_s, fm_t).mean()

		return loss

	def poly_kernel(self, fm1, fm2):
		fm1 = fm1.unsqueeze(1)
		fm2 = fm2.unsqueeze(2)
		out = (fm1 * fm2).sum(-1).pow(2)

		return out

6、PKT

论文链接:http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
Adopted from https://github.com/passalis/probabilistic_kt/blob/master/nn/pkt.py
'''
class PKTCosSim(nn.Module):
	'''
	Learning Deep Representations with Probabilistic Knowledge Transfer
	http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf
	'''
	def __init__(self):
		super(PKTCosSim, self).__init__()

	def forward(self, feat_s, feat_t, eps=1e-6):
		# Normalize each vector by its norm
		feat_s_norm = torch.sqrt(torch.sum(feat_s ** 2, dim=1, keepdim=True))
		feat_s = feat_s / (feat_s_norm + eps)
		feat_s[feat_s != feat_s] = 0

		feat_t_norm = torch.sqrt(torch.sum(feat_t ** 2, dim=1, keepdim=True))
		feat_t = feat_t / (feat_t_norm + eps)
		feat_t[feat_t != feat_t] = 0

		# Calculate the cosine similarity
		feat_s_cos_sim = torch.mm(feat_s, feat_s.transpose(0, 1))
		feat_t_cos_sim = torch.mm(feat_t, feat_t.transpose(0, 1))

		# Scale cosine similarity to [0,1]
		feat_s_cos_sim = (feat_s_cos_sim + 1.0) / 2.0
		feat_t_cos_sim = (feat_t_cos_sim + 1.0) / 2.0

		# Transform them into probabilities
		feat_s_cond_prob = feat_s_cos_sim / torch.sum(feat_s_cos_sim, dim=1, keepdim=True)
		feat_t_cond_prob = feat_t_cos_sim / torch.sum(feat_t_cos_sim, dim=1, keepdim=True)

		# Calculate the KL-divergence
		loss = torch.mean(feat_t_cond_prob * torch.log((feat_t_cond_prob + eps) / (feat_s_cond_prob + eps)))

		return loss

7、FSP

论文链接:http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class FSP(nn.Module):
	'''
	A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning
	http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
	'''
	def __init__(self):
		super(FSP, self).__init__()

	def forward(self, fm_s1, fm_s2, fm_t1, fm_t2):
		loss = F.mse_loss(self.fsp_matrix(fm_s1,fm_s2), self.fsp_matrix(fm_t1,fm_t2))

		return loss

	def fsp_matrix(self, fm1, fm2):
		if fm1.size(2) > fm2.size(2):
			fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))

		fm1 = fm1.view(fm1.size(0), fm1.size(1), -1)
		fm2 = fm2.view(fm2.size(0), fm2.size(1), -1).transpose(1,2)

		fsp = torch.bmm(fm1, fm2) / fm1.size(2)

		return fsp

8、FT

论文链接:http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class FT(nn.Module):
	'''
	araphrasing Complex Network: Network Compression via Factor Transfer
	http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf
	'''
	def __init__(self):
		super(FT, self).__init__()

	def forward(self, factor_s, factor_t):
		loss = F.l1_loss(self.normalize(factor_s), self.normalize(factor_t))

		return loss

	def normalize(self, factor):
		norm_factor = F.normalize(factor.view(factor.size(0),-1))

		return norm_factor

9、RKD

论文链接:https://arxiv.org/pdf/1904.05068.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
From https://github.com/lenscloth/RKD/blob/master/metric/loss.py
'''
class RKD(nn.Module):
	'''
	Relational Knowledge Distillation
	https://arxiv.org/pdf/1904.05068.pdf
	'''
	def __init__(self, w_dist, w_angle):
		super(RKD, self).__init__()

		self.w_dist  = w_dist
		self.w_angle = w_angle

	def forward(self, feat_s, feat_t):
		loss = self.w_dist * self.rkd_dist(feat_s, feat_t) + \
			   self.w_angle * self.rkd_angle(feat_s, feat_t)

		return loss

	def rkd_dist(self, feat_s, feat_t):
		feat_t_dist = self.pdist(feat_t, squared=False)
		mean_feat_t_dist = feat_t_dist[feat_t_dist>0].mean()
		feat_t_dist = feat_t_dist / mean_feat_t_dist

		feat_s_dist = self.pdist(feat_s, squared=False)
		mean_feat_s_dist = feat_s_dist[feat_s_dist>0].mean()
		feat_s_dist = feat_s_dist / mean_feat_s_dist

		loss = F.smooth_l1_loss(feat_s_dist, feat_t_dist)

		return loss

	def rkd_angle(self, feat_s, feat_t):
		# N x C --> N x N x C
		feat_t_vd = (feat_t.unsqueeze(0) - feat_t.unsqueeze(1))
		norm_feat_t_vd = F.normalize(feat_t_vd, p=2, dim=2)
		feat_t_angle = torch.bmm(norm_feat_t_vd, norm_feat_t_vd.transpose(1, 2)).view(-1)

		feat_s_vd = (feat_s.unsqueeze(0) - feat_s.unsqueeze(1))
		norm_feat_s_vd = F.normalize(feat_s_vd, p=2, dim=2)
		feat_s_angle = torch.bmm(norm_feat_s_vd, norm_feat_s_vd.transpose(1, 2)).view(-1)

		loss = F.smooth_l1_loss(feat_s_angle, feat_t_angle)

		return loss

	def pdist(self, feat, squared=False, eps=1e-12):
		feat_square = feat.pow(2).sum(dim=1)
		feat_prod   = torch.mm(feat, feat.t())
		feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

		if not squared:
			feat_dist = feat_dist.sqrt()

		feat_dist = feat_dist.clone()
		feat_dist[range(len(feat)), range(len(feat))] = 0

		return feat_dist

在这里插入图片描述

10、AB

论文链接:https://arxiv.org/pdf/1811.03233.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class AB(nn.Module):
	'''
	Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons
	https://arxiv.org/pdf/1811.03233.pdf
	'''
	def __init__(self, margin):
		super(AB, self).__init__()

		self.margin = margin

	def forward(self, fm_s, fm_t):
		# fm befor activation
		loss = ((fm_s + self.margin).pow(2) * ((fm_s > -self.margin) & (fm_t <= 0)).float() +
			    (fm_s - self.margin).pow(2) * ((fm_s <= self.margin) & (fm_t > 0)).float())
		loss = loss.mean()

		return loss

11、SP

论文链接:https://arxiv.org/pdf/1907.09682.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class SP(nn.Module):
	'''
	Similarity-Preserving Knowledge Distillation
	https://arxiv.org/pdf/1907.09682.pdf
	'''
	def __init__(self):
		super(SP, self).__init__()

	def forward(self, fm_s, fm_t):
		fm_s = fm_s.view(fm_s.size(0), -1)
		G_s  = torch.mm(fm_s, fm_s.t())
		norm_G_s = F.normalize(G_s, p=2, dim=1)

		fm_t = fm_t.view(fm_t.size(0), -1)
		G_t  = torch.mm(fm_t, fm_t.t())
		norm_G_t = F.normalize(G_t, p=2, dim=1)

		loss = F.mse_loss(norm_G_s, norm_G_t)

		return loss

12、Sobolev

论文链接:https://arxiv.org/pdf/1706.04859.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad


class Sobolev(nn.Module):
	'''
	Sobolev Training for Neural Networks
	https://arxiv.org/pdf/1706.04859.pdf

	Knowledge Transfer with Jacobian Matching
	http://de.arxiv.org/pdf/1803.00443
	'''
	def __init__(self):
		super(Sobolev, self).__init__()

	def forward(self, out_s, out_t, img, target):
		target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
		grad_s       = grad(outputs=target_out_s, inputs=img,
							grad_outputs=torch.ones_like(target_out_s),
							create_graph=True, retain_graph=True, only_inputs=True)[0]
		norm_grad_s  = F.normalize(grad_s.view(grad_s.size(0), -1), p=2, dim=1)

		target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
		grad_t       = grad(outputs=target_out_t, inputs=img,
							grad_outputs=torch.ones_like(target_out_t),
							create_graph=True, retain_graph=True, only_inputs=True)[0]
		norm_grad_t  = F.normalize(grad_t.view(grad_t.size(0), -1), p=2, dim=1)

		loss = F.mse_loss(norm_grad_s, norm_grad_t.detach())

		return loss

13、BSS

论文链接:https://arxiv.org/pdf/1805.05532.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.gradcheck import zero_gradients
'''
Modified by https://github.com/bhheo/BSS_distillation
'''

def reduce_sum(x, keepdim=True):
	for d in reversed(range(1, x.dim())):
		x = x.sum(d, keepdim=keepdim)
	return x


def l2_norm(x, keepdim=True):
	norm = reduce_sum(x*x, keepdim=keepdim)
	return norm.sqrt()


class BSS(nn.Module):
	'''
	Knowledge Distillation with Adversarial Samples Supporting Decision Boundary
	https://arxiv.org/pdf/1805.05532.pdf
	'''
	def __init__(self, T):
		super(BSS, self).__init__()
		self.T = T

	def forward(self, attacked_out_s, attacked_out_t):
		loss = F.kl_div(F.log_softmax(attacked_out_s/self.T, dim=1),
						F.softmax(attacked_out_t/self.T, dim=1),
						reduction='batchmean') #* self.T * self.T

		return loss


class BSSAttacker():
	def __init__(self, step_alpha, num_steps, eps=1e-4):
		self.step_alpha = step_alpha
		self.num_steps = num_steps
		self.eps = eps

	def attack(self, model, img, target, attack_class):
		img = img.detach().requires_grad_(True)

		step = 0
		while step < self.num_steps:
			zero_gradients(img)
			_, _, _, _, _, output = model(img)

			score = F.softmax(output, dim=1)
			score_target = score.gather(1, target.unsqueeze(1))
			score_attack_class = score.gather(1, attack_class.unsqueeze(1))

			loss = (score_attack_class - score_target).sum()
			loss.backward()

			step_alpha = self.step_alpha * (target == output.max(1)[1]).float()
			step_alpha = step_alpha.unsqueeze(1).unsqueeze(1).unsqueeze(1)
			if step_alpha.sum() == 0:
				break

			pert = (score_target - score_attack_class).unsqueeze(1).unsqueeze(1)
			norm_pert = step_alpha * (pert + self.eps) * img.grad / l2_norm(img.grad)

			step_adv = img + norm_pert
			step_adv = torch.clamp(step_adv, -2.5, 2.5)
			img.data = step_adv.data

			step += 1

		return img

14、CC

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


'''
CC with P-order Taylor Expansion of Gaussian RBF kernel
'''
class CC(nn.Module):
	'''
	Correlation Congruence for Knowledge Distillation
	http://openaccess.thecvf.com/content_ICCV_2019/papers/
	Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf
	'''
	def __init__(self, gamma, P_order):
		super(CC, self).__init__()
		self.gamma = gamma
		self.P_order = P_order

	def forward(self, feat_s, feat_t):
		corr_mat_s = self.get_correlation_matrix(feat_s)
		corr_mat_t = self.get_correlation_matrix(feat_t)

		loss = F.mse_loss(corr_mat_s, corr_mat_t)

		return loss

	def get_correlation_matrix(self, feat):
		feat = F.normalize(feat, p=2, dim=-1)
		sim_mat  = torch.matmul(feat, feat.t())
		corr_mat = torch.zeros_like(sim_mat)

		for p in range(self.P_order+1):
			corr_mat += math.exp(-2*self.gamma) * (2*self.gamma)**p / \
						math.factorial(p) * torch.pow(sim_mat, p)

		return corr_mat

15、LwM

论文链接:https://arxiv.org/pdf/1811.08051.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad

'''
LwM is originally an incremental learning method with 
classification/distillation/attention distillation losses.

Here, LwM is only defined as the Grad-CAM based attention distillation.
'''
class LwM(nn.Module):
	'''
	Learning without Memorizing
	https://arxiv.org/pdf/1811.08051.pdf
	'''
	def __init__(self):
		super(LwM, self).__init__()

	def forward(self, out_s, fm_s, out_t, fm_t, target):
		target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
		grad_fm_t    = grad(outputs=target_out_t, inputs=fm_t,
							grad_outputs=torch.ones_like(target_out_t),
							create_graph=True, retain_graph=True, only_inputs=True)[0]
		weights_t = F.adaptive_avg_pool2d(grad_fm_t, 1)
		cam_t = torch.sum(torch.mul(weights_t, grad_fm_t), dim=1, keepdim=True)
		cam_t = F.relu(cam_t)
		cam_t = cam_t.view(cam_t.size(0), -1)
		norm_cam_t = F.normalize(cam_t, p=2, dim=1)

		target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
		grad_fm_s    = grad(outputs=target_out_s, inputs=fm_s,
							grad_outputs=torch.ones_like(target_out_s),
							create_graph=True, retain_graph=True, only_inputs=True)[0]
		weights_s = F.adaptive_avg_pool2d(grad_fm_s, 1)
		cam_s = torch.sum(torch.mul(weights_s, grad_fm_s), dim=1, keepdim=True)
		cam_s = F.relu(cam_s)
		cam_s = cam_s.view(cam_s.size(0), -1)
		norm_cam_s = F.normalize(cam_s, p=2, dim=1)

		loss = F.l1_loss(norm_cam_s, norm_cam_t.detach())

		return loss

16、IRG

论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


class IRG(nn.Module):
	'''
	Knowledge Distillation via Instance Relationship Graph
	http://openaccess.thecvf.com/content_CVPR_2019/papers/
	Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf

	The official code is written by Caffe
	https://github.com/yufanLIU/IRG
	'''
	def __init__(self, w_irg_vert, w_irg_edge, w_irg_tran):
		super(IRG, self).__init__()

		self.w_irg_vert = w_irg_vert
		self.w_irg_edge = w_irg_edge
		self.w_irg_tran = w_irg_tran

	def forward(self, irg_s, irg_t):
		fm_s1, fm_s2, feat_s, out_s = irg_s
		fm_t1, fm_t2, feat_t, out_t = irg_t

		loss_irg_vert = F.mse_loss(out_s, out_t)

		irg_edge_feat_s = self.euclidean_dist_feat(feat_s, squared=True)
		irg_edge_feat_t = self.euclidean_dist_feat(feat_t, squared=True)
		irg_edge_fm_s1  = self.euclidean_dist_fm(fm_s1, squared=True)
		irg_edge_fm_t1  = self.euclidean_dist_fm(fm_t1, squared=True)
		irg_edge_fm_s2  = self.euclidean_dist_fm(fm_s2, squared=True)
		irg_edge_fm_t2  = self.euclidean_dist_fm(fm_t2, squared=True)
		loss_irg_edge = (F.mse_loss(irg_edge_feat_s, irg_edge_feat_t) +
						 F.mse_loss(irg_edge_fm_s1,  irg_edge_fm_t1 ) +
						 F.mse_loss(irg_edge_fm_s2,  irg_edge_fm_t2 )) / 3.0

		irg_tran_s = self.euclidean_dist_fms(fm_s1, fm_s2, squared=True)
		irg_tran_t = self.euclidean_dist_fms(fm_t1, fm_t2, squared=True)
		loss_irg_tran = F.mse_loss(irg_tran_s, irg_tran_t)

		# print(self.w_irg_vert * loss_irg_vert)
		# print(self.w_irg_edge * loss_irg_edge)
		# print(self.w_irg_tran * loss_irg_tran)
		# print()

		loss = (self.w_irg_vert * loss_irg_vert +
				self.w_irg_edge * loss_irg_edge +
				self.w_irg_tran * loss_irg_tran)

		return loss

	def euclidean_dist_fms(self, fm1, fm2, squared=False, eps=1e-12):
		'''
		Calculating the IRG Transformation, where fm1 precedes fm2 in the network.
		'''
		if fm1.size(2) > fm2.size(2):
			fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))
		if fm1.size(1) < fm2.size(1):
			fm2 = (fm2[:,0::2,:,:] + fm2[:,1::2,:,:]) / 2.0

		fm1 = fm1.view(fm1.size(0), -1)
		fm2 = fm2.view(fm2.size(0), -1)
		fms_dist = torch.sum(torch.pow(fm1-fm2, 2), dim=-1).clamp(min=eps)

		if not squared:
			fms_dist = fms_dist.sqrt()

		fms_dist = fms_dist / fms_dist.max()

		return fms_dist

	def euclidean_dist_fm(self, fm, squared=False, eps=1e-12): 
		'''
		Calculating the IRG edge of feature map. 
		'''
		fm = fm.view(fm.size(0), -1)
		fm_square = fm.pow(2).sum(dim=1)
		fm_prod   = torch.mm(fm, fm.t())
		fm_dist   = (fm_square.unsqueeze(0) + fm_square.unsqueeze(1) - 2 * fm_prod).clamp(min=eps)

		if not squared:
			fm_dist = fm_dist.sqrt()

		fm_dist = fm_dist.clone()
		fm_dist[range(len(fm)), range(len(fm))] = 0
		fm_dist = fm_dist / fm_dist.max()

		return fm_dist

	def euclidean_dist_feat(self, feat, squared=False, eps=1e-12):
		'''
		Calculating the IRG edge of feat.
		'''
		feat_square = feat.pow(2).sum(dim=1)
		feat_prod   = torch.mm(feat, feat.t())
		feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

		if not squared:
			feat_dist = feat_dist.sqrt()

		feat_dist = feat_dist.clone()
		feat_dist[range(len(feat)), range(len(feat))] = 0
		feat_dist = feat_dist / feat_dist.max()

		return feat_dist

17、VID

论文链接:https://openaccess.thecvf.com/content_CVPR_2019/papers/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


def conv1x1(in_channels, out_channels):
	return nn.Conv2d(in_channels, out_channels,
					 kernel_size=1, stride=1,
					 padding=0, bias=False)

'''
Modified from https://github.com/HobbitLong/RepDistiller/blob/master/distiller_zoo/VID.py
'''
class VID(nn.Module):
	'''
	Variational Information Distillation for Knowledge Transfer
	https://zpascal.net/cvpr2019/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf
	'''
	def __init__(self, in_channels, mid_channels, out_channels, init_var, eps=1e-6):
		super(VID, self).__init__()
		self.eps = eps
		self.regressor = nn.Sequential(*[
				conv1x1(in_channels, mid_channels),
				# nn.BatchNorm2d(mid_channels),
				nn.ReLU(),
				conv1x1(mid_channels, mid_channels),
				# nn.BatchNorm2d(mid_channels),
				nn.ReLU(),
				conv1x1(mid_channels, out_channels),
			])
		self.alpha = nn.Parameter(
				np.log(np.exp(init_var-eps)-1.0) * torch.ones(out_channels)
			)

		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
				if m.bias is not None:
					nn.init.constant_(m.bias, 0)
			# elif isinstance(m, nn.BatchNorm2d):
			# 	nn.init.constant_(m.weight, 1)
			# 	nn.init.constant_(m.bias, 0)

	def forward(self, fm_s, fm_t):
		pred_mean = self.regressor(fm_s)
		pred_var  = torch.log(1.0+torch.exp(self.alpha)) + self.eps
		pred_var  = pred_var.view(1, -1, 1, 1)
		neg_log_prob = 0.5 * (torch.log(pred_var) + (pred_mean-fm_t)**2 / pred_var)
		loss = torch.mean(neg_log_prob)

		return loss

18、OFD

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


'''
Modified from https://github.com/clovaai/overhaul-distillation/blob/master/CIFAR-100/distiller.py
'''
class OFD(nn.Module):
	'''
	A Comprehensive Overhaul of Feature Distillation
	http://openaccess.thecvf.com/content_ICCV_2019/papers/
	Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf
	'''
	def __init__(self, in_channels, out_channels):
		super(OFD, self).__init__()
		self.connector = nn.Sequential(*[
				nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
				nn.BatchNorm2d(out_channels)
			])

		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
				if m.bias is not None:
					nn.init.constant_(m.bias, 0)
			elif isinstance(m, nn.BatchNorm2d):
				nn.init.constant_(m.weight, 1)
				nn.init.constant_(m.bias, 0)

	def forward(self, fm_s, fm_t):
		margin = self.get_margin(fm_t)
		fm_t = torch.max(fm_t, margin)
		fm_s = self.connector(fm_s)

		mask = 1.0 - ((fm_s <= fm_t) & (fm_t <= 0.0)).float()
		loss = torch.mean((fm_s - fm_t)**2 * mask)

		return loss

	def get_margin(self, fm, eps=1e-6):
		mask = (fm < 0.0).float()
		masked_fm = fm * mask

		margin = masked_fm.sum(dim=(0,2,3), keepdim=True) / (mask.sum(dim=(0,2,3), keepdim=True)+eps)

		return margin

19、AFD

论文链接:https://openreview.net/pdf?id=ryxyCeHtPB
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

'''
In the original paper, AFD is one of components of AFDS.
AFDS: Attention Feature Distillation and Selection
AFD:  Attention Feature Distillation
AFS:  Attention Feature Selection

We find the original implementation of attention is unstable, thus we replace it with a SE block.
'''
class AFD(nn.Module):
	'''
	Pay Attention to Features, Transfer Learn Faster CNNs
	https://openreview.net/pdf?id=ryxyCeHtPB
	'''
	def __init__(self, in_channels, att_f):
		super(AFD, self).__init__()
		mid_channels = int(in_channels * att_f)

		self.attention = nn.Sequential(*[
				nn.Conv2d(in_channels, mid_channels, 1, 1, 0, bias=True),
				nn.ReLU(inplace=True),
				nn.Conv2d(mid_channels, in_channels, 1, 1, 0, bias=True)
			])

		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
				if m.bias is not None:
					nn.init.constant_(m.bias, 0)
		
	def forward(self, fm_s, fm_t, eps=1e-6):
		fm_t_pooled = F.adaptive_avg_pool2d(fm_t, 1)
		rho = self.attention(fm_t_pooled)
		# rho = F.softmax(rho.squeeze(), dim=-1)
		rho = torch.sigmoid(rho.squeeze())
		rho = rho / torch.sum(rho, dim=1, keepdim=True)

		fm_s_norm = torch.norm(fm_s, dim=(2,3), keepdim=True)
		fm_s      = torch.div(fm_s, fm_s_norm+eps)
		fm_t_norm = torch.norm(fm_t, dim=(2,3), keepdim=True)
		fm_t      = torch.div(fm_t, fm_t_norm+eps)

		loss = rho * torch.pow(fm_s-fm_t, 2).mean(dim=(2,3))
		loss = loss.sum(1).mean(0)

		return loss


20、CRD

论文链接:https://openreview.net/pdf?id=SkgpBJrtvS
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


'''
Modified from https://github.com/HobbitLong/RepDistiller/tree/master/crd
'''
class CRD(nn.Module):
	'''
	Contrastive Representation Distillation
	https://openreview.net/pdf?id=SkgpBJrtvS

	includes two symmetric parts:
	(a) using teacher as anchor, choose positive and negatives over the student side
	(b) using student as anchor, choose positive and negatives over the teacher side

	Args:
		s_dim: the dimension of student's feature
		t_dim: the dimension of teacher's feature
		feat_dim: the dimension of the projection space
		nce_n: number of negatives paired with each positive
		nce_t: the temperature
		nce_mom: the momentum for updating the memory buffer
		n_data: the number of samples in the training set, which is the M in Eq.(19)
	'''
	def __init__(self, s_dim, t_dim, feat_dim, nce_n, nce_t, nce_mom, n_data):
		super(CRD, self).__init__()
		self.embed_s = Embed(s_dim, feat_dim)
		self.embed_t = Embed(t_dim, feat_dim)
		self.contrast = ContrastMemory(feat_dim, n_data, nce_n, nce_t, nce_mom)
		self.criterion_s = ContrastLoss(n_data)
		self.criterion_t = ContrastLoss(n_data)

	def forward(self, feat_s, feat_t, idx, sample_idx):
		feat_s = self.embed_s(feat_s)
		feat_t = self.embed_t(feat_t)
		out_s, out_t = self.contrast(feat_s, feat_t, idx, sample_idx)
		loss_s = self.criterion_s(out_s)
		loss_t = self.criterion_t(out_t)
		loss = loss_s + loss_t

		return loss


class Embed(nn.Module):
	def __init__(self, in_dim, out_dim):
		super(Embed, self).__init__()
		self.linear = nn.Linear(in_dim, out_dim)

	def forward(self, x):
		x = x.view(x.size(0), -1)
		x = self.linear(x)
		x = F.normalize(x, p=2, dim=1)

		return x


class ContrastLoss(nn.Module):
	'''
	contrastive loss, corresponding to Eq.(18)
	'''
	def __init__(self, n_data, eps=1e-7):
		super(ContrastLoss, self).__init__()
		self.n_data = n_data
		self.eps = eps

	def forward(self, x):
		bs = x.size(0)
		N  = x.size(1) - 1
		M  = float(self.n_data)

		# loss for positive pair
		pos_pair = x.select(1, 0)
		log_pos  = torch.div(pos_pair, pos_pair.add(N / M + self.eps)).log_()

		# loss for negative pair
		neg_pair = x.narrow(1, 1, N)
		log_neg  = torch.div(neg_pair.clone().fill_(N / M), neg_pair.add(N / M + self.eps)).log_()

		loss = -(log_pos.sum() + log_neg.sum()) / bs

		return loss


class ContrastMemory(nn.Module):
	def __init__(self, feat_dim, n_data, nce_n, nce_t, nce_mom):
		super(ContrastMemory, self).__init__()
		self.N = nce_n
		self.T = nce_t
		self.momentum = nce_mom
		self.Z_t = None
		self.Z_s = None

		stdv = 1. / math.sqrt(feat_dim / 3.)
		self.register_buffer('memory_t', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))
		self.register_buffer('memory_s', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))

	def forward(self, feat_s, feat_t, idx, sample_idx):
		bs = feat_s.size(0)
		feat_dim = self.memory_s.size(1)
		n_data = self.memory_s.size(0)

		# using teacher as anchor
		weight_s = torch.index_select(self.memory_s, 0, sample_idx.view(-1)).detach()
		weight_s = weight_s.view(bs, self.N + 1, feat_dim)
		out_t = torch.bmm(weight_s, feat_t.view(bs, feat_dim, 1))
		out_t = torch.exp(torch.div(out_t, self.T)).squeeze().contiguous()

		# using student as anchor
		weight_t = torch.index_select(self.memory_t, 0, sample_idx.view(-1)).detach()
		weight_t = weight_t.view(bs, self.N + 1, feat_dim)
		out_s = torch.bmm(weight_t, feat_s.view(bs, feat_dim, 1))
		out_s = torch.exp(torch.div(out_s, self.T)).squeeze().contiguous()

		# set Z if haven't been set yet
		if self.Z_t is None:
			self.Z_t = (out_t.mean() * n_data).detach().item()
		if self.Z_s is None:
			self.Z_s = (out_s.mean() * n_data).detach().item()

		out_t = torch.div(out_t, self.Z_t)
		out_s = torch.div(out_s, self.Z_s)

		# update memory
		with torch.no_grad():
			pos_mem_t = torch.index_select(self.memory_t, 0, idx.view(-1))
			pos_mem_t.mul_(self.momentum)
			pos_mem_t.add_(torch.mul(feat_t, 1 - self.momentum))
			pos_mem_t = F.normalize(pos_mem_t, p=2, dim=1)
			self.memory_t.index_copy_(0, idx, pos_mem_t)

			pos_mem_s = torch.index_select(self.memory_s, 0, idx.view(-1))
			pos_mem_s.mul_(self.momentum)
			pos_mem_s.add_(torch.mul(feat_s, 1 - self.momentum))
			pos_mem_s = F.normalize(pos_mem_s, p=2, dim=1)
			self.memory_s.index_copy_(0, idx, pos_mem_s)

		return out_s, out_t


21、DML

论文链接:https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
DML with only two networks
'''
class DML(nn.Module):
	'''
	Deep Mutual Learning
	https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf
	'''
	def __init__(self):
		super(DML, self).__init__()

	def forward(self, out1, out2):
		loss = F.kl_div(F.log_softmax(out1, dim=1),
						F.softmax(out2, dim=1),
						reduction='batchmean')

		return loss

猜你喜欢

转载自blog.csdn.net/m0_47867638/article/details/131180418
今日推荐