Python多线程与多进程

线程与进程的区别

进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握。关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”。 线程是程序中一个单一的顺序控制流程。进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。

进程和线程区别

进程是资源分配的基本单位。所有与该进程有关的资源,都被记录在进程控制块PCB中。以表示该进程拥有这些资源或正在使用它们。另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间。当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。

与进程相对应,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源。线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成。寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。

通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源。在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显著提高系统资源的利用率和吞吐量。因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。

线程与进程的区别可以归纳为以下4点:

1.地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。

2.通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。

3.调度和切换:线程上下文切换比进程上下文切换要快得多。

4.在多线程OS中,进程不是一个可执行的实体。

多进程和多线程的比较

对比维度 多进程 多线程 总结
数据共享、同步 数据共享复杂,同步简单 数据共享简单,同步复杂 各有优劣
内存、CPU 占用内存多,切换复杂,CPU利用率低 占用内存少,切换简单,CPU利用率高 线程占优
创建、销毁、切换 复杂,速度慢 简单,速度快 线程占优
编程、调试 编程简单,调试简单 编程复杂,调试复杂 进程占优
可靠性 进程间不会互相影响 一个线程挂掉将导致整个进程挂掉 进程占优
分布式 适用于多核、多机,扩展到多台机器简单 适合于多核 进程占优

总结,进程和线程还可以类比为火车和车厢:

  • 线程在进程下行进(单纯的车厢无法运行)
  • 一个进程可以包含多个线程(一辆火车可以有多个车厢)
  • 不同进程间数据很难共享(一辆火车上的乘客很难换到另外一辆火车,比如站点换乘)
  • 同一进程下不同线程间数据很易共享(A车厢换到B车厢很容易)
  • 进程要比线程消耗更多的计算机资源(采用多列火车相比多个车厢更耗资源)
  • 进程间不会相互影响,一个线程挂掉将导致整个进程挂掉(一列火车不会影响到另外一列火车,但是如果一列火车上中间的一节车厢着火了,将影响到该趟火车的所有车厢)
  • 进程可以拓展到多机,进程最多适合多核(不同火车可以开在多个轨道上,同一火车的车厢不能在行进的不同的轨道上)
  • 进程使用的内存地址可以上锁,即一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。(比如火车上的洗手间)-”互斥锁(mutex)”
  • 进程使用的内存地址可以限定使用量(比如火车上的餐厅,最多只允许多少人进入,如果满了需要在门口等,等有人出来了才能进去)-“信号量(semaphore)”

Python的多进程包multiprocessing

Python的threading包主要运用多线程的开发,但由于GIL的存在,Python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,大部分情况需要使用多进程。在Python 2.6版本的时候引入了multiprocessing包,它完整的复制了一套threading所提供的接口方便迁移。唯一的不同就是它使用了多进程而不是多线程。每个进程有自己的独立的GIL,因此也不会出现进程之间的GIL争抢。

借助这个multiprocessing,你可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

Multiprocessing产生的背景

除了应对Python的GIL以外,产生multiprocessing的另外一个原因时Windows操作系统与Linux/Unix系统的不一致。

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(父进程)复制了一份(子进程),然后,分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getpid()就可以拿到父进程的ID。

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

上述代码在Linux、Unix和Mac上的执行结果为:


本文转自掘金:https://www.biaodianfu.com/python-multi-thread-and-multi-process.html

猜你喜欢

转载自blog.csdn.net/CSDNgaoqingrui/article/details/80681146