(C++) 多线程之生产者消费者问题

前言

生产者消费者问题_百度百科 (baidu.com)

生产者消费者问题 (英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区已经装满时加入数据,消费者也不会在缓冲区为空时消耗数据。

Code

Code

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <queue>
#include <string>
#include <thread>
#include <vector>

constexpr int WORKERTHREAD_COUNT = 3;

class ProducerConsumerProblem {
    
    
private:
    // 任务队列
    std::queue<std::string> m_queue;
    // mutex
    std::mutex m_mutex;
    // condition_variable
    std::condition_variable m_cv;

public:
    /**
     * 生产者函数
     */
    void produce(const int cnt) {
    
    
        printf("(Produce Thread:%lld) start\n", std::this_thread::get_id());
        // RAII 自动解锁
        std::lock_guard<std::mutex> lock(m_mutex);

        char buff[1024] = {
    
    };
        for (int i = 0; i < cnt; i += 1) {
    
    
            sprintf(buff, "Produce[%02d]", i);
            m_queue.push(buff);
        }

        // 唤醒所有消费者
        m_cv.notify_all();
        // 唤醒任意一个消费者
        // m_cv.notify_one();
    }

    /**
     * 消费者线程
     */
    void consumer() {
    
    
        printf("(Consumer Thread:%lld) start\n", std::this_thread::get_id());
        constexpr int SLEEP_TIME = 5;

        std::string receiveBuffer;
        while (1) {
    
    
            // 比lock_guard更细致的控制力度
            std::unique_lock<std::mutex> lock(m_mutex);

            /**
             * @brief
             * 如果任务队列为空,则等待
             *
             * 为什么是循环判断?
             * >条件变量虚假唤醒:
             * >  消费者线程被唤醒后
             * >  缓存队列中没有数据
             *
             * 条件变量 wait(mutex)的作用
             * 1. 把互斥锁解开
             * 2. 阻塞,等待被唤醒
             * 3. 给互斥锁加锁
             * 等效写法
             * m_cv.wait(lock, [this]() { return !m_queue.empty(); });
             */
            while (m_queue.empty()) {
    
    
                // 等待生产者唤醒
                printf("(Thread:%lld) is waiting ~~~\n",
                       std::this_thread::get_id());
                m_cv.wait(lock);
            }
            // 此时任务队列有数据,且cv被唤醒

            // 消费者处理一个任务
            receiveBuffer = m_queue.front();
            m_queue.pop();
            // 当前消费者线程获得数据,手动解锁
            lock.unlock();

            // 模拟随机设定一个消费时间
            int solveTimeCost = (rand() % SLEEP_TIME);
            printf("(Thread:%lld) => %s need %d seconds ...\n",
                   std::this_thread::get_id(), receiveBuffer.c_str(),
                   solveTimeCost);
            std::this_thread::sleep_for(std::chrono::seconds(solveTimeCost));
        }
    }
};

int main() {
    
    
    srand(time(0));
    ProducerConsumerProblem obj;
    std::vector<std::thread> thdVec;

    for (int i = 0; i < WORKERTHREAD_COUNT; i += 1) {
    
    
        // 只能move,放入vector延长对象的生存周期
        auto thd = std::thread(&ProducerConsumerProblem::consumer, &obj);
        thdVec.push_back(std::move(thd));
        thdVec[i].detach();
    }

    int cnt;
    // 通过这里的输入阻塞程序
    while (printf(">>Please input produce number:>\n"), std::cin >> cnt) {
    
    
        obj.produce(cnt);
    }

    return 0;
}

运行效果

环境

g++ (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 7.3.0

效果

分别输入2 10 3

>>Please input produce number:>
(Consumer Thread:2) start
(Consumer Thread:3) start
(Consumer Thread:4) start
(Thread:2) is waiting ~~~
(Thread:3) is waiting ~~~
(Thread:4) is waiting ~~~
2
(Produce Thread:1) start
>>Please input produce number:>
(Thread:4) => Produce[00] need 1 seconds ...
(Thread:2) => Produce[01] need 1 seconds ...
(Thread:3) is waiting ~~~
(Thread:4) is waiting ~~~
(Thread:2) is waiting ~~~
10
(Produce Thread:1) start
>>Please input produce number:>
(Thread:2) => Produce[00] need 2 seconds ...
(Thread:4) => Produce[01] need 2 seconds ...
(Thread:3) => Produce[02] need 1 seconds ...
(Thread:3) => Produce[03] need 2 seconds ...
(Thread:2) => Produce[04] need 4 seconds ...
(Thread:4) => Produce[05] need 4 seconds ...
(Thread:3) => Produce[06] need 4 seconds ...
(Thread:2) => Produce[07] need 0 seconds ...
(Thread:2) => Produce[08] need 4 seconds ...
(Thread:4) => Produce[09] need 0 seconds ...
(Thread:4) is waiting ~~~
(Thread:3) is waiting ~~~
(Thread:2) is waiting ~~~
3
(Produce Thread:1) start
>>Please input produce number:>
(Thread:4) => Produce[00] need 4 seconds ...
(Thread:3) => Produce[02] need 0 seconds ...
(Thread:3) is waiting ~~~
(Thread:2) => Produce[01] need 4 seconds ...
(Thread:4) is waiting ~~~
(Thread:2) is waiting ~~~
^Z

分解讲解

main()

int main() {
    
    
    // 设置随机数种子
    srand(time(0));
    // 采用对象+成员函数的方式进行多线程
    ProducerConsumerProblem obj;
    std::vector<std::thread> thdVec;

    for (int i = 0; i < WORKERTHREAD_COUNT; i += 1) {
    
    
        // 只能move,放入vector延长对象的生存周期
        auto thd = std::thread(&ProducerConsumerProblem::consumer, &obj);
        thdVec.push_back(std::move(thd));
        thdVec[i].detach();
    }
	
    // 通过手动输入,生产物品
    int cnt;
    // 通过这里的输入阻塞程序
    while (printf(">>Please input produce number:>\n"), std::cin >> cnt) {
    
    
        obj.produce(cnt);
    }

    return 0;
}

这里采用对象+成员函数的形式创建线程,因为成员函数的第一个参数是一个隐式的this,因此写std::thread(&ProducerConsumerProblem::consumer, &obj);

注意,std::thread只能move,不能copy。

要将线程对象的生命周期延长,因此移动到vector中。

为了让下文的code执行,将线程进行分离detach()

class ProducerConsumerProblem

class ProducerConsumerProblem {
    
    
private:
    // 任务队列
    std::queue<std::string> m_queue;
    // mutex
    std::mutex m_mutex;
    // condition_variable
    std::condition_variable m_cv;

public:
    /**
     * 生产者函数
     */
    void produce(const int cnt) ;

    /**
     * 消费者函数
     */
    void consumer() ;
};

这里的核心数据结构就是std::condition_variable 通常配合std::unique_lock<>使用。

produce()

    void produce(const int cnt) {
    
    
        printf("(Produce Thread:%lld) start\n", std::this_thread::get_id());
        // RAII 自动解锁
        std::lock_guard<std::mutex> lock(m_mutex);

        char buff[1024] = {
    
    };
        for (int i = 0; i < cnt; i += 1) {
    
    
            sprintf(buff, "Produce[%02d]", i);
            m_queue.push(buff);
        }

        // 唤醒所有消费者
        m_cv.notify_all();
        // 唤醒任意一个消费者
        // m_cv.notify_one();
    }

std::lock_guard<std::mutex>可以做到最简单的构造时上锁,析构时解锁。

notify_all()唤醒所有wait中的对象。

notify_one()唤醒一个wait中的对象。

consumer()

    void consumer() {
    
    
        printf("(Consumer Thread:%lld) start\n", std::this_thread::get_id());
        constexpr int SLEEP_TIME = 5;

        std::string receiveBuffer;
        while (1) {
    
    
            // 比lock_guard更细致的控制力度
            std::unique_lock<std::mutex> lock(m_mutex);
			/// !!!最重要的部分!!!
            while (m_queue.empty()) {
    
    
                // 等待生产者唤醒
                printf("(Thread:%lld) is waiting ~~~\n",
                       std::this_thread::get_id());
                m_cv.wait(lock);
            }
            // 此时任务队列有数据,且cv被唤醒

            // 消费者处理一个任务
            receiveBuffer = m_queue.front();
            m_queue.pop();
            // 当前消费者线程获得数据,手动解锁
            lock.unlock();

            // 模拟随机设定一个消费时间
            int solveTimeCost = (rand() % SLEEP_TIME);
            printf("(Thread:%lld) => %s need %d seconds ...\n",
                   std::this_thread::get_id(), receiveBuffer.c_str(),
                   solveTimeCost);
            std::this_thread::sleep_for(std::chrono::seconds(solveTimeCost));
        }
    }

std::unique_lock<std::mutex>居于更细致的操作力度,可以手动上锁解锁。

m_cv.wait(lock);整个demo的核心!!!

  • 为什么是循环判断?
    • 条件变量虚假唤醒:消费者线程被唤醒后,缓存队列中没有数据,重新进入wait
  • 条件变量 wait(mutex)的作用
    1. 把互斥锁解开
    2. 阻塞,等待被唤醒
    3. 给互斥锁加锁

在消费者在处理任务时,可以让unique_lock主动解锁。




END

猜你喜欢

转载自blog.csdn.net/CUBE_lotus/article/details/132094677
今日推荐