用python实现基本数据结构【02/4】

*说明

        如果需要用到这些知识却没有掌握,则会让人感到沮丧,也可能导致面试被拒。无论是花几天时间“突击”,还是利用零碎的时间持续学习,在数据结构上下点功夫都是值得的。那么Python 中有哪些数据结构呢?列表、字典、集合,还有……栈?Python 有栈吗?本系列文章将给出详细拼图。

第5章:Searching 和 Sorting

        排序和查找是最基础和频繁的操作,python内置了in操作符和bisect二分操作模块实现查找,内置了sorted方法来实现排序操作。二分和快排也是面试中经常考到的,本章讲的是基本的排序和查找。

def binary_search(sorted_seq, val):
    """ 实现标准库中的bisect.bisect_left """
    low = 0
    high = len(sorted_seq) - 1
    while low <= high:
        mid = (high + low) // 2
        if sorted_seq[mid] == val:
            return mid
        elif val < sorted_seq[mid]:
            high = mid - 1
        else:
            low = mid + 1
    return low

  def bubble_sort(seq):  # O(n^2), n(n-1)/2 = 1/2(n^2 + n)
      n = len(seq)
      for i in range(n-1):
          for j in range(n-1-i):    # 这里之所以 n-1 还需要 减去 i 是因为每一轮冒泡最大的元素都会冒泡到最后,无需再比较
              if seq[j] > seq[j+1]:
                  seq[j], seq[j+1] = seq[j+1], seq[j]


def select_sort(seq):
    """可以看作是冒泡的改进,每次找一个最小的元素交换,每一轮只需要交换一次"""
    n = len(seq)
    for i in range(n-1):
        min_idx = i    # assume the ith element is the smallest
        for j in range(i+1, n):
            if seq[j] < seq[min_idx]:   # find the minist element index
                min_idx = j
        if min_idx != i:    # swap
            seq[i], seq[min_idx] = seq[min_idx], seq[i]


def insertion_sort(seq):
    """ 每次挑选下一个元素插入已经排序的数组中,初始时已排序数组只有一个元素"""
    n = len(seq)
    for i in range(1, n):
        value = seq[i]    # save the value to be positioned
        # find the position where value fits in the ordered part of the list
        pos = i
        while pos > 0 and value < seq[pos-1]:
            # Shift the items to the right during the search
            seq[pos] = seq[pos-1]
            pos -= 1
        seq[pos] = value


def merge_sorted_list(listA, listB):
    """ 归并两个有序数组 """
    new_list = list()
    a = b = 0
    while a < len(listA) and b < len(listB):
        if listA[a] < listB[b]:
            new_list.append(listA[a])
            a += 1
        else:
            new_list.append(listB[b])
            b += 1

    while a < len(listA):
        new_list.append(listA[a])
        a += 1

    while b < len(listB):
        new_list.append(listB[b])
        b += 1

    return new_list

第6章: Linked Structure

        list是最常用的数据结构,但是list在中间增减元素的时候效率会很低,这时候linked list会更适合,缺点就是获取元素的平均时间复杂度变成了O(n)

# 单链表实现
class ListNode:
    def __init__(self, data):
        self.data = data
        self.next = None


def travsersal(head, callback):
    curNode = head
    while curNode is not None:
        callback(curNode.data)
        curNode = curNode.next


def unorderdSearch(head, target):
    curNode = head
    while curNode is not None and curNode.data != target:
        curNode = curNode.next
    return curNode is not None


# Given the head pointer, prepend an item to an unsorted linked list.
def prepend(head, item):
    newNode = ListNode(item)
    newNode.next = head
    head = newNode


# Given the head reference, remove a target from a linked list
def remove(head, target):
    predNode = None
    curNode = head
    while curNode is not None and curNode.data != target:
        # 寻找目标
        predNode = curNode
        curNode = curNode.data
    if curNode is not None:
        if curNode is head:
            head = curNode.next
        else:
            predNode.next = curNode.next

第7章:Stacks

        栈也是计算机里用得比较多的数据结构,栈是一种后进先出的数据结构,可以理解为往一个桶里放盘子,先放进去的会被压在地下,拿盘子的时候,后放的会被先拿出来。

class Stack:
    """ Stack ADT, using a python list
    Stack()
    isEmpty()
    length()
    pop(): assert not empty
    peek(): assert not empty, return top of non-empty stack without removing it
    push(item)
    """
    def __init__(self):
        self._items = list()

    def isEmpty(self):
        return len(self) == 0

    def __len__(self):
        return len(self._items)

    def peek(self):
        assert not self.isEmpty()
        return self._items[-1]

    def pop(self):
        assert not self.isEmpty()
        return self._items.pop()

    def push(self, item):
        self._items.append(item)


class Stack:
    """ Stack ADT, use linked list
    使用list实现很简单,但是如果涉及大量push操作,list的空间不够时复杂度退化到O(n)
    而linked list可以保证最坏情况下仍是O(1)
    """
    def __init__(self):
        self._top = None    # top节点, _StackNode or None
        self._size = 0    # int

    def isEmpty(self):
        return self._top is None

    def __len__(self):
        return self._size

    def peek(self):
        assert not self.isEmpty()
        return self._top.item

    def pop(self):
        assert not self.isEmpty()
        node = self._top
        self.top = self._top.next
        self._size -= 1
        return node.item

    def _push(self, item):
        self._top = _StackNode(item, self._top)
        self._size += 1


class _StackNode:
    def __init__(self, item, link):
        self.item = item
        self.next = link

第8章:Queues

队列也是经常使用的数据结构,比如发送消息等,celery可以使用redis提供的list实现消息队列。 本章我们用list和linked list来实现队列和优先级队列。

class Queue:
    """ Queue ADT, use list。list实现,简单但是push和pop效率最差是O(n)
    Queue()
    isEmpty()
    length()
    enqueue(item)
    dequeue()
    """
    def __init__(self):
        self._qList = list()

    def isEmpty(self):
        return len(self) == 0

    def __len__(self):
        return len(self._qList)

    def enquue(self, item):
        self._qList.append(item)

    def dequeue(self):
        assert not self.isEmpty()
        return self._qList.pop(0)


from array import Array    # Array那一章实现的Array ADT
class Queue:
    """
    circular Array ,通过头尾指针实现。list内置append和pop复杂度会退化,使用
    环数组实现可以使得入队出队操作时间复杂度为O(1),缺点是数组长度需要固定。
    """
    def __init__(self, maxSize):
        self._count = 0
        self._front = 0
        self._back = maxSize - 1
        self._qArray = Array(maxSize)

    def isEmpty(self):
        return self._count == 0

    def isFull(self):
        return self._count == len(self._qArray)

    def __len__(self):
        return len(self._count)

    def enqueue(self, item):
        assert not self.isFull()
        maxSize = len(self._qArray)
        self._back = (self._back + 1) % maxSize     # 移动尾指针
        self._qArray[self._back] = item
        self._count += 1

    def dequeue(self):
        assert not self.isFull()
        item = self._qArray[self._front]
        maxSize = len(self._qArray)
        self._front = (self._front + 1) % maxSize
        self._count -= 1
        return item

class _QueueNode:
    def __init__(self, item):
        self.item = item


class Queue:
    """ Queue ADT, linked list 实现。为了改进环型数组有最大数量的限制,改用
    带有头尾节点的linked list实现。
    """
    def __init__(self):
        self._qhead = None
        self._qtail = None
        self._qsize = 0

    def isEmpty(self):
        return self._qhead is None

    def __len__(self):
        return self._count

    def enqueue(self, item):
        node = _QueueNode(item)    # 创建新的节点并用尾节点指向他
        if self.isEmpty():
            self._qhead = node
        else:
            self._qtail.next = node
        self._qtail = node
        self._qcount += 1

    def dequeue(self):
        assert not self.isEmpty(), 'Can not dequeue from an empty queue'
        node = self._qhead
        if self._qhead is self._qtail:
            self._qtail = None
        self._qhead = self._qhead.next    # 前移头节点
        self._count -= 1
        return node.item


class UnboundedPriorityQueue:
    """ PriorityQueue ADT: 给每个item加上优先级p,高优先级先dequeue
    分为两种:
    - bounded PriorityQueue: 限制优先级在一个区间[0...p)
    - unbounded PriorityQueue: 不限制优先级

    PriorityQueue()
    BPriorityQueue(numLevels): create a bounded PriorityQueue with priority in range
        [0, numLevels-1]
    isEmpty()
    length()
    enqueue(item, priority): 如果是bounded PriorityQueue, priority必须在区间内
    dequeue(): 最高优先级的出队,同优先级的按照FIFO顺序

    - 两种实现方式:
    1.入队的时候都是到队尾,出队操作找到最高优先级的出队,出队操作O(n)
    2.始终维持队列有序,每次入队都找到该插入的位置,出队操作是O(1)
    (注意如果用list实现list.append和pop操作复杂度会因内存分配退化)
    """
    from collections import namedtuple
    _PriorityQEntry = namedtuple('_PriorityQEntry', 'item, priority')

    # 采用方式1,用内置list实现unbounded PriorityQueue
    def __init__(self):
        self._qlist = list()

    def isEmpty(self):
        return len(self) == 0

    def __len__(self):
        return len(self._qlist)

    def enqueue(self, item, priority):
        entry = UnboundedPriorityQueue._PriorityQEntry(item, priority)
        self._qlist.append(entry)

    def deque(self):
        assert not self.isEmpty(), 'can not deque from an empty queue'
        highest = self._qlist[0].priority
        for i in range(len(self)):    # 出队操作O(n),遍历找到最高优先级
            if self._qlist[i].priority < highest:
                highest = self._qlist[i].priority
        entry = self._qlist.pop(highest)
        return entry.item


class BoundedPriorityQueue:
    """ BoundedPriorityQueue ADT,用linked list实现。上一个地方提到了 BoundedPriorityQueue
    但是为什么需要 BoundedPriorityQueue呢? BoundedPriorityQueue 的优先级限制在[0, maxPriority-1]
    对于 UnboundedPriorityQueue,出队操作由于要遍历寻找优先级最高的item,所以平均
    是O(n)的操作,但是对于 BoundedPriorityQueue,用队列数组实现可以达到常量时间,
    用空间换时间。比如要弹出一个元素,直接找到第一个非空队列弹出 元素就可以了。
    (小数字代表高优先级,先出队)

    qlist
    [0] -> ["white"]
    [1]
    [2] -> ["black", "green"]
    [3] -> ["purple", "yellow"]
    """
    # Implementation of the bounded Priority Queue ADT using an array of #
    # queues in which the queues are implemented using a linked list.
    from array import Array    #  第二章定义的ADT

    def __init__(self, numLevels):
        self._qSize = 0
        self._qLevels = Array(numLevels)
        for i in range(numLevels):
            self._qLevels[i] = Queue()    # 上一节讲到用linked list实现的Queue

    def isEmpty(self):
        return len(self) == 0

    def __len__(self):
        return len(self._qSize)

    def enqueue(self, item, priority):
        assert priority >= 0 and priority < len(self._qLevels), 'invalid priority'
        self._qLevel[priority].enquue(item)    # 直接找到 priority 对应的槽入队

    def deque(self):
        assert not self.isEmpty(), 'can not deque from an empty queue'
        i = 0
        p = len(self._qLevels)
        while i < p and not self._qLevels[i].isEmpty():    # 找到第一个非空队列
            i += 1
        return self._qLevels[i].dequeue()

猜你喜欢

转载自blog.csdn.net/gongdiwudu/article/details/132787292