Linux驱动入门 —— 利用寄存器操作GPIO进行LED点灯

目录

IMX6ULL 的 GPIO 操作方法

GPIO 操作相关名词

IMX6ULL 的 GPIO 模块结构

GPIO 模块内部

读 GPIO​编辑

写 GPIO​编辑

LED 点灯驱动程序

字符设备驱动程序框架

编写驱动程序的步骤:

先编写驱动程序代码:

再编写测试程序代码:

Makefile

上机实验


IMX6ULL 的 GPIO 操作方法

GPIO 操作相关名词

IMX6ULL 的 GPIO 模块结构

参考芯片手册

有 5 组 GPIO(GPIO1~GPIO5),每组引脚最多有 32 个,但是可能实际上并有那么多。

  • GPIO1 有 32 个引脚:GPIO1_IO0~GPIO1_IO31;
  • GPIO2 有 22 个引脚:GPIO2_IO0~GPIO2_IO21;
  • GPIO3 有 29 个引脚:GPIO3_IO0~GPIO3_IO28;
  • GPIO4 有 29 个引脚:GPIO4_IO0~GPIO4_IO28;
  • GPIO5 有 12 个引脚:GPIO5_IO0~GPIO5_IO11;
  • GPIO 的控制涉及 4 大模块:CCM、IOMUXC、GPIO 模块本身,框图如图 4.2

1.2 CCM 用于设置是否向 GPIO 模块提供时钟

GPIOx 要用 CCM_CCGRy 寄存器中的 2 位来决定该组 GPIO 是否使能。

哪组 GPIO 用哪个 CCM_CCGR 寄存器来设置,请看上图红框部分。

CCM_CCGR 寄存器中某 2 位的取值含义如下:

  • 00:该 GPIO 模块全程被关闭
  • 01:该 GPIO 模块在 CPU run mode 情况下是使能的;在 WAIT 或 STOP 模式下,关闭
  • 10:保留
  • 11:该 GPIO 模块全程使能

GPIO2 时钟控制:

GPIO1、GPIO5 时钟控制:

GPIO3 时钟控制:

GPIO4 时钟控制:

IOMUXC:引脚的模式(Mode、功能)

对于某个/某组引脚,IOMUXC 中有 2 个寄存器用来设置它:

选择功能:

a) IOMUXC_SW_MUX_CTL_PAD_ <PADNAME>:Mux pad xxx,选择 某个 pad 的功能

b) IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>:Mux grp xxx,选 择某组引脚的功能 某个引脚,或是某组预设的引脚,都有 8 个可选的模式(alternate (ALT) MUX_MODE)。

比如:

设置上下拉电阻等参数:

a) IOMUXC_SW_PAD_CTL_PAD_<PAD_NANE>:pad pad xxx,设置某个 pad 的参数

b) IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>:pad grp xxx,设置某组引脚的参数

比如:

GPIO 模块内部

框图如下:

我们暂时只需要关心3个寄存器

GPIOx_GDIR:设置引脚方向,每位对应一个引脚,1-output,0-input

GPIOx_DR:设置输出引脚的电平,每位对应一个引脚,1-高电平,0-低电平

GPIOx_PSR:读取引脚的电平,每位对应一个引脚,1-高电平,0-低电平

读 GPIO

翻译一下:

  • 设置 CCM_CCGRx 寄存器中某位使能对应的 GPIO 模块 // 默认是使能的,上图省略了
  • 设置 IOMUX 来选择引脚用于 GPIO
  • 设置 GPIOx_GDIR 中某位为 0,把该引脚设置为输入功能
  • 读 GPIOx_DR 或 GPIOx_PSR 得到某位的值(读 GPIOx_DR 返回的是 GPIOx_PSR 的值)

写 GPIO

翻译一下:

  • 设置 CCM_CCGRx 寄存器中某位使能对应的 GPIO 模块 // 默认是使能 的,上图省略了
  • 设置 IOMUX 来选择引脚用于 GPIO
  • 设置 GPIOx_GDIR 中某位为 1,把该引脚设置为输出功能
  • 写 GPIOx_DR 某位的值

需要注意的是,你可以设置该引脚的 loopback 功能,这样就可以从 GPIOx_PSR 中读到引脚的有实电平;你从 GPIOx_DR 中读回的只是上次设置的 值,它并不能反应引脚的真实电平,比如可能因为硬件故障导致该引脚跟地短路了,你通过设置 GPIOx_DR 让它输出高电平并不会起效果

LED 点灯驱动程序

字符设备驱动程序框架

字符设备驱动程序的框架如下:

编写驱动程序的步骤:

  1. 确定主设备号,也可以让内核分配
  2. 定义自己的 file_operations 结构体
  3. 实现对应的 drv_open/drv read/drv write 等函数,填入 file operations 结构体
  4. 把 file_operations 结构体告诉内核: register_chrdev
  5. 谁来注册驱动程序啊? 得有一个入口函数:安装驱动程序时,就会去调用这个入口函数
  6. 有入口函数就应该有出口函数: 卸载驱动程序时,出口函数调用unregister_chrdev
  7. 其他完善:提供设备信息,自动创建设备节点: class_create,device_create

驱动怎么操作硬件?

  • 通过 ioremap 映射寄存器的物理地址得到虚拟地址,读写虚拟地址。

驱动怎么和 APP 传输数据?

  • 通过 copy_to_user、copy_from_user 这 2 个函数。

先编写驱动程序代码:

  • 实现 led_open 函数,在里面初始化 LED 引脚。
  • 实现 led_write 函数,在里面根据 APP 传来的值控制 LED。
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <linux/device.h>
#include <asm/io.h>

static int major;
static struct class *led_class;

/* registers */
// IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 地址:0x02290000 + 0x14
static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;

// GPIO5_GDIR 地址:0x020AC004
static volatile unsigned int *GPIO5_GDIR;

//GPIO5_DR 地址:0x020AC000
static volatile unsigned int *GPIO5_DR;

static ssize_t led_write(struct file *filp, const char __user *buf,
			 size_t count, loff_t *ppos)
{
	char val;
	int ret;
	
	/* copy_from_user : get data from app */
	ret = copy_from_user(&val, buf, 1);

	/* to set gpio register: out 1/0 */
	if (val)
	{
		/* set gpio to let led on */
		*GPIO5_DR &= ~(1<<3);
	}
	else
	{

		/* set gpio to let led off */
		*GPIO5_DR |= (1<<3);
	}
	return 1;
}

static int led_open(struct inode *inode, struct file *filp)
{
	/* enable gpio5
	 * configure gpio5_io3 as gpio
	 * configure gpio5_io3 as output 
	 */
	*IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 &= ~0xf;
	*IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 |= 0x5;

	*GPIO5_GDIR |= (1<<3);
	
	return 0;
}

static struct file_operations led_fops = {
	.owner		= THIS_MODULE,
	.write		= led_write,
	.open		= led_open,
};

/* 入口函数 */
static int __init led_init(void)
{
	printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	major = register_chrdev(0, "zgl_led", &led_fops);

	/* ioremap */
	// IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 地址:0x02290000 + 0x14
	IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = ioremap(0x02290000 + 0x14, 4);
	
	// GPIO5_GDIR 地址:0x020AC004
	GPIO5_GDIR = ioremap(0x020AC004, 4);
	
	//GPIO5_DR 地址:0x020AC000
	GPIO5_DR  = ioremap(0x020AC000, 4);

	led_class = class_create(THIS_MODULE, "myled");
	device_create(led_class, NULL, MKDEV(major, 0), NULL, "myled"); /* /dev/myled */
	
	return 0;
}

static void __exit led_exit(void)
{
	iounmap(IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3);
	iounmap(GPIO5_GDIR);
	iounmap(GPIO5_DR);
	
	device_destroy(led_class, MKDEV(major, 0));
	class_destroy(led_class);
	
	unregister_chrdev(major, "zgl_led");
}

module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");

再编写测试程序代码:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>


// ledtest /dev/myled on
// ledtest /dev/myled off

int main(int argc, char **argv)
{
	int fd;
	char status = 0;
	
	if (argc != 3)
	{
		printf("Usage: %s <dev> <on|off>\n", argv[0]);
		printf("  eg: %s /dev/myled on\n", argv[0]);
		printf("  eg: %s /dev/myled off\n", argv[0]);
		return -1;
	}
	// open
	fd = open(argv[1], O_RDWR);
	if (fd < 0)
	{
		printf("can not open %s\n", argv[0]);
		return -1;
	}

	// write
	if (strcmp(argv[2], "on") == 0)
	{
		status = 1;
	}

	write(fd, &status, 1);
	return 0;	
}

Makefile

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册

KERN_DIR = /home/book/100ask_imx6ull-sdk/Linux-4.9.88

all:
	make -C $(KERN_DIR) M=`pwd` modules 
	$(CROSS_COMPILE)gcc -o ledtest ledtest.c 

clean:
	make -C $(KERN_DIR) M=`pwd` modules clean
	rm -rf modules.order
	rm -f ledtest

obj-m	+= led_drv.o

上机实验

执行 make 命令编译驱动程序和测试程序

启动单板后,可以通过 NFS 挂载 Ubuntu 的某个目录,访问该目录中的程序。

具体挂载步骤可以看我之前写过的文章 开发板挂载 Ubuntu 的 NFS 目录-CSDN博客

打开内核打印:echo "7 4 1 7" > /proc/sys/kernel/printk

insmod led_drv.ko // 装载驱动

ls /dev/myled // 驱动程序会生成设备节点

cat /proc/devices,查看当前已经被使用掉的设备号

驱动名字与我们在驱动层使用register_chrdev()函数的第二个参数有关

./ledtest /dev/myled on // 成功点灯

如果驱动使用完了,不要用了

可用 rmmod led_drv.ko 指令卸载驱动

猜你喜欢

转载自blog.csdn.net/m0_74712453/article/details/134953877