课程表2[中等]

一、题目

现在你总共有numCourses门课需要选,记为0numCourses - 1。给你一个数组prerequisites,其中prerequisites[i] = [ai, bi],表示在选修课程ai前 必须 先选修bi

例如,想要学习课程0,你需要先完成课程1,我们用一个匹配来表示:[0,1]

返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。

示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有2门课程。要学习课程1,你需要先完成课程0。因此,正确的课程顺序为[0,1]

示例 2:
输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有4门课程。要学习课程3,你应该先完成课程1和课程2。并且课程1和课程2都应该排在课程0之后。
因此,一个正确的课程顺序是[0,1,2,3]。另一个正确的排序是[0,2,1,3]

示例 3:

输入:numCourses = 1, prerequisites = []
输出:[0]

1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
所有[ai, bi]互不相同

二、代码

给定一个包含n个节点的有向图G,我们给出它的节点编号的一种排列,如果满足:

对于图G中的任意一条有向边(u,v)u在排列中都出现在v的前面。

那么称该排列是图G的「拓扑排序」。根据上述的定义,我们可以得出两个结论:
1、如果图G中存在环(即图G不是「有向无环图」),那么图G不存在拓扑排序。这是因为假设图中存在环x1,x2,⋯ ,xn,x1​,那么x1在排列中必须出现在xn的前面,但xn同时也必须出现在x1的前面,因此不存在一个满足要求的排列,也就不存在拓扑排序;
2、如果图G是有向无环图,那么它的拓扑排序可能不止一种。举一个最极端的例子,如果图G值包含n个节点却没有任何边,那么任意一种编号的排列都可以作为拓扑排序。

有了上述的简单分析,我们就可以将本题建模成一个求拓扑排序的问题了:
1、我们将每一门课看成一个节点;
2、如果想要学习课程A之前必须完成课程B,那么我们从BA连接一条有向边。这样以来,在拓扑排序中,B一定出现在A的前面。

求出该图的拓扑排序,就可以得到一种符合要求的课程学习顺序。下面介绍两种求解拓扑排序的方法。

【1】深度优先搜索: 我们可以将深度优先搜索的流程与拓扑排序的求解联系起来,用一个栈来存储所有已经搜索完成的节点。

对于一个节点u,如果它的所有相邻节点都已经搜索完成,那么在搜索回溯到u的时候,u本身也会变成一个已经搜索完成的节点。这里的「相邻节点」指的是从u出发通过一条有向边可以到达的所有节点。

假设我们当前搜索到了节点u,如果它的所有相邻节点都已经搜索完成,那么这些节点都已经在栈中了,此时我们就可以把u入栈。可以发现,如果我们从栈顶往栈底的顺序看,由于u处于栈顶的位置,那么u出现在所有u的相邻节点的前面。因此对于u这个节点而言,它是满足拓扑排序的要求的。

这样以来,我们对图进行一遍深度优先搜索。当每个节点进行回溯的时候,我们把该节点放入栈中。最终从栈顶到栈底的序列就是一种拓扑排序。

算法: 对于图中的任意一个节点,它在搜索的过程中有三种状态,即:
1、「未搜索」:我们还没有搜索到这个节点;
2、「搜索中」:我们搜索过这个节点,但还没有回溯到该节点,即该节点还没有入栈,还有相邻的节点没有搜索完成);
3、「已完成」:我们搜索过并且回溯过这个节点,即该节点已经入栈,并且所有该节点的相邻节点都出现在栈的更底部的位置,满足拓扑排序的要求。

通过上述的三种状态,我们就可以给出使用深度优先搜索得到拓扑排序的算法流程,在每一轮的搜索搜索开始时,我们任取一个「未搜索」的节点开始进行深度优先搜索。
1、我们将当前搜索的节点u标记为「搜索中」,遍历该节点的每一个相邻节点v
  ■ 如果v为「未搜索」,那么我们开始搜索v,待搜索完成回溯到u
  ■ 如果v为「搜索中」,那么我们就找到了图中的一个环,因此是不存在拓扑排序的;
  ■ 如果v为「已完成」,那么说明v已经在栈中了,而u还不在栈中,因此u无论何时入栈都不会影响到(u,v)之前的拓扑关系,以及不用进行任何操作。

2、当u的所有相邻节点都为「已完成」时,我们将u放入栈中,并将其标记为「已完成」。

在整个深度优先搜索的过程结束后,如果我们没有找到图中的环,那么栈中存储这所有的n个节点,从栈顶到栈底的顺序即为一种拓扑排序。

class Solution {
    
    
    // 存储有向图
    List<List<Integer>> edges;
    // 标记每个节点的状态:0=未搜索,1=搜索中,2=已完成
    int[] visited;
    // 用数组来模拟栈,下标 n-1 为栈底,0 为栈顶
    int[] result;
    // 判断有向图中是否有环
    boolean valid = true;
    // 栈下标
    int index;

    public int[] findOrder(int numCourses, int[][] prerequisites) {
    
    
        edges = new ArrayList<List<Integer>>();
        for (int i = 0; i < numCourses; ++i) {
    
    
            edges.add(new ArrayList<Integer>());
        }
        visited = new int[numCourses];
        result = new int[numCourses];
        index = numCourses - 1;
        for (int[] info : prerequisites) {
    
    
            edges.get(info[1]).add(info[0]);
        }
        // 每次挑选一个「未搜索」的节点,开始进行深度优先搜索
        for (int i = 0; i < numCourses && valid; ++i) {
    
    
            if (visited[i] == 0) {
    
    
                dfs(i);
            }
        }
        if (!valid) {
    
    
            return new int[0];
        }
        // 如果没有环,那么就有拓扑排序
        return result;
    }

    public void dfs(int u) {
    
    
        // 将节点标记为「搜索中」
        visited[u] = 1;
        // 搜索其相邻节点
        // 只要发现有环,立刻停止搜索
        for (int v: edges.get(u)) {
    
    
            // 如果「未搜索」那么搜索相邻节点
            if (visited[v] == 0) {
    
    
                dfs(v);
                if (!valid) {
    
    
                    return;
                }
            }
            // 如果「搜索中」说明找到了环
            else if (visited[v] == 1) {
    
    
                valid = false;
                return;
            }
        }
        // 将节点标记为「已完成」
        visited[u] = 2;
        // 将节点入栈
        result[index--] = u;
    }
}

时间复杂度: O(n+m),其中n为课程数,m为先修课程的要求数。这其实就是对图进行广度优先搜索的时间复杂度。
空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为O(n+m)。在深度优先搜索的过程中,我们需要最多O(n)的栈空间(递归)进行深度优先搜索,并且还需要若干个O(n)的空间存储节点状态、最终答案等。

【2】广度优先搜索: 方法一的深度优先搜索是一种「逆向思维」:最先被放入栈中的节点是在拓扑排序中最后面的节点。我们也可以使用正向思维,顺序地生成拓扑排序,这种方法也更加直观。

我们考虑拓扑排序中最前面的节点,该节点一定不会有任何入边,也就是它没有任何的先修课程要求。当我们将一个节点加入答案中后,我们就可以移除它的所有出边,代表着它的相邻节点少了一门先修课程的要求。如果某个相邻节点变成了「没有任何入边的节点」,那么就代表着这门课可以开始学习了。按照这样的流程,我们不断地将没有入边的节点加入答案,直到答案中包含所有的节点(得到了一种拓扑排序)或者不存在没有入边的节点(图中包含环)。

上面的想法类似于广度优先搜索,因此我们可以将广度优先搜索的流程与拓扑排序的求解联系起来。

算法: 我们使用一个队列来进行广度优先搜索。开始时,所有入度为 000 的节点都被放入队列中,它们就是可以作为拓扑排序最前面的节点,并且它们之间的相对顺序是无关紧要的。

在广度优先搜索的每一步中,我们取出队首的节点u
1、我们将u放入答案中;
2、我们移除u的所有出边,也就是将u的所有相邻节点的入度减少1。如果某个相邻节点v的入度变为0,那么我们就将v放入队列中。

在广度优先搜索的过程结束后。如果答案中包含了这n个节点,那么我们就找到了一种拓扑排序,否则说明图中存在环,也就不存在拓扑排序了。

class Solution {
    
    
    // 存储有向图
    List<List<Integer>> edges;
    // 存储每个节点的入度
    int[] indeg;
    // 存储答案
    int[] result;
    // 答案下标
    int index;

    public int[] findOrder(int numCourses, int[][] prerequisites) {
    
    
        edges = new ArrayList<List<Integer>>();
        for (int i = 0; i < numCourses; ++i) {
    
    
            edges.add(new ArrayList<Integer>());
        }
        indeg = new int[numCourses];
        result = new int[numCourses];
        index = 0;
        for (int[] info : prerequisites) {
    
    
            edges.get(info[1]).add(info[0]);
            ++indeg[info[0]];
        }

        Queue<Integer> queue = new LinkedList<Integer>();
        // 将所有入度为 0 的节点放入队列中
        for (int i = 0; i < numCourses; ++i) {
    
    
            if (indeg[i] == 0) {
    
    
                queue.offer(i);
            }
        }

        while (!queue.isEmpty()) {
    
    
            // 从队首取出一个节点
            int u = queue.poll();
            // 放入答案中
            result[index++] = u;
            for (int v: edges.get(u)) {
    
    
                --indeg[v];
                // 如果相邻节点 v 的入度为 0,就可以选 v 对应的课程了
                if (indeg[v] == 0) {
    
    
                    queue.offer(v);
                }
            }
        }

        if (index != numCourses) {
    
    
            return new int[0];
        }
        return result;
    }
}

时间复杂度: O(n+m),其中n为课程数,m为先修课程的要求数。这其实就是对图进行广度优先搜索的时间复杂度。
空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为O(n+m)。在深度优先搜索的过程中,我们需要最多O(n)的栈空间(递归)进行深度优先搜索,并且还需要若干个O(n)的空间存储节点状态、最终答案等。

猜你喜欢

转载自blog.csdn.net/zhengzhaoyang122/article/details/135119038