Dropout 层的python实现(内含dropout函数及带dropout的前向反向传播函数)

参考:https://zhuanlan.zhihu.com/p/29592806


# -*- coding:utf-8 -*-
import numpy as np
def dropout(X, keep_prob = 0.5):
    """
    :param X: input
    :param keep_prob:
    :return:
    """

    D = np.random.rand(X.shape[0], X.shape[1]) # step1: initialize matrix d
    D = D < keep_prob # step2: convert entries of d
    X = X * D # step3: shut down some neuron
    X = X/keep_prob #step4: scale the value of neuron

    return X

'''
numpy.random.rand(do,d1, ...,dn)
create an array of the given shape and populate it with random samples from a uniform distribution over[0,1)
'''

# 带 dropout的前向后向传播
def forward_propogation_with_dropout(X, parameters, keep_prob = 0.5):
    """
    Implemente the forward propagation : LINERE->DROPOUT->LINEAR->RELU->DROPOUT->SCALAR
    Arguments:

    X -- input dataset, of shape (2, number of examples)

    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":

                    W1 -- weight matrix of shape (20, 2)

                    b1 -- bias vector of shape (20, 1)

                    W2 -- weight matrix of shape (3, 20)

                    b2 -- bias vector of shape (3, 1)

                    W3 -- weight matrix of shape (1, 3)

                    b3 -- bias vector of shape (1, 1)

    keep_prob - probability of keeping a neuron active during drop-out, scalar

    Returns:

    A3 -- last activation value, output of the forward propagation, of shape (1,1)

    cache -- tuple, information stored for computing the backward propagation

    """
    np.random.seed(1)

    # retrieve parameters

    W1 = parameters["W1"]

    b1 = parameters["b1"]

    W2 = parameters["W2"]

    b2 = parameters["b2"]

    W3 = parameters["W3"]

    b3 = parameters["b3"]
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    Z1 = np.dot(W1, X) + b1

    A1 = relu(Z1)

    # 4 steps

    D1 = np.random.rand(Z1.shape[0], Z1.shape[1])     # Step 1: initialize matrix D1 = np.random.rand(..., ...)

    D1 = D1 < keep_prob                               # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)

    A1 = A1*D1                                        # Step 3: shut down some neurons of A1

    A1 = A1/keep_prob                                 # Step 4: scale the value of neurons that haven't been shut down

    Z2 = np.dot(W2, A1) + b2

    A2 = relu(Z2)

    D2 = np.random.rand(Z2.shape[0], Z2.shape[1])                                       # Step 1: initialize matrix D2 = np.random.rand(..., ...)

    D2 = D2 < keep_prob                                # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)

    A2 = A2*D2                                         # Step 3: shut down some neurons of A2

    A2 = A2/keep_prob                                  # Step 4: scale the value of neurons that haven't been shut down
    Z3 = np.dot(W3, A2) + b3

    A3 = sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

#下面要写的代码是反向传播,注意,反向传播也要关闭对应的神经元,同样也需要除以keep_prob。


def backward_propagation_with_dropout(X, Y, cache, keep_prob):

    """

    Implements the backward propagation of our baseline model to which we added dropout.



    Arguments:

    X -- input dataset, of shape (2, number of examples)

    Y -- "true" labels vector, of shape (output size, number of examples)

    cache -- cache output from forward_propagation_with_dropout()

    keep_prob - probability of keeping a neuron active during drop-out, scalar



    Returns:

    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables

    """
    m = X.shape[1]

    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = 1. / m * np.dot(dZ3, A2.T)

    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)

    dA2 = D2 * dA2  # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation

    dA2 = dA2 / keep_prob  # Step 2: Scale the value of neurons that haven't been shut down

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))

    dW2 = 1. / m * np.dot(dZ2, A1.T)

    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = D1 * dA1  # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation

    dA1 = dA1 / keep_prob  # Step 2: Scale the value of neurons that haven't been shut down

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))

    dW1 = 1. / m * np.dot(dZ1, X.T)

    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,

                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,

                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients



猜你喜欢

转载自blog.csdn.net/jillian_sea/article/details/80790212