Logistic回归模型

个人认为这个玩意水很深啊,还没摸透呢,也是看了一些别人的博客自己再总结一下

然后看到有的博客扯到《机器学习实战》这本书,我点进去看了一下,对于我这英文水准比较烂的人来说,完全是两眼一抹黑啊

什么是逻辑回归?

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。

这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

  • 如果是连续的,就是多重线性回归;
  • 如果是二项分布,就是Logistic回归;
  • 如果是Poisson分布,就是Poisson回归;
  • 如果是负二项分布,就是负二项回归。

Logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的Logistic回归。

Logistic回归的主要用途:

  • 寻找危险因素:寻找某一疾病的危险因素等;
  • 预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
  • 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。

Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。

上面都是别人扯得姑且看看,我们最直观的还是看看逻辑回归是个啥模样吧?

这是它的数学表达式:


这是它的二维平面图:


Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:


它有一个非常好的性质,即当z趋于正无穷时,g(z)趋于1,而当z趋于负无穷时,g(z)趋于0,这非常适合于我们的分类概率模型。另外,不多说,一言不合就求导,我也不知道为啥要求导

给你们一个针对上面公式求导过程吧:


如果我们令g(z)中的z为:z=xθ,这样就得到了二元逻辑回归模型的一般形式:

我估计他是想表达这个式子:


还是弄成图片好点,格式太麻烦了。。。。。。。。。。。。。。。。。。。。。。。

然后就跳到 二元逻辑回归的损失函数


函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:


 把这两个式子写成一个式子,就是:


似然函数的代数表达式为:


其中m为样本的个数。

    对似然函数对数化取反的表达式,即损失函数表达式为:



构造损失函数J

Cost函数和J函数如下,它们是基于最大似然估计推导得到的。



下面详细说明推导的过程:

(1)式综合起来可以写成:

取似然函数为:


对数似然函数为:


最大似然估计就是求使取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将取为下式,即:


因为乘了一个负的系数-1/m,所以取最小值时的θ为要求的最佳参数。


梯度下降法求的最小值

θ更新过程:

 


θ更新过程可以写成:

 

其实还有一种写法,我看了老半天才看懂:



下面介绍向量化的过程:

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:

g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。由上式可知可由一次计算求得。

θ更新过程可以改为:


小结

    逻辑回归尤其是二元逻辑回归是非常常见的模型,训练速度很快,虽然使用起来没有支持向量机(SVM)那么占主流,但是解决普通的分类问题是足够了,训练速度也比起SVM要快不少。如果你要理解机器学习分类算法,那么第一个应该学习的分类算法个人觉得应该是逻辑回归。理解了逻辑回归,其他的分类算法再学习起来应该没有那么难了。

说实话,我现在也是一知半解,但是Logistic回归我们可以把它当做线性回归来理解,只不过用途不一样而已,它也需要梯度下降,需要正则化这一系列调参之后才能拟合的更好,等以后我有了更深的理解了再来更新博客吧,这篇博客是我看了三篇相关博客写的。。。另外,今天get了一个新技能,以后写数学公式就不会这么low了。

下面这段话或许会对你们有点帮助。。。。

1)对于一个问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题;

2)通过最大似然、最大后验概率或者最小化分类误差等等建立模型的代价函数,也就是一个最优化问题。找到最优化问题的解,也就是能拟合我们的数据的最好的模型参数;

3)然后我们需要求解这个代价函数,找到最优解。这求解也就分很多种情况了:

      a)如果这个优化函数存在解析解。例如我们求最值一般是对代价函数求导,找到导数为0的点,也就是最大值或者最小值的地方了。如果代价函数能简单求导,并且求导后为0的式子存在解析解,那么我们就可以直接得到最优的参数了。

      b)如果式子很难求导,例如函数里面存在隐含的变量或者变量相互间存在耦合,也就互相依赖的情况。或者求导后式子得不到解释解,例如未知参数的个数大于已知方程组的个数等。这时候我们就需要借助迭代算法来一步一步找到最有解了。迭代是个很神奇的东西,它将远大的目标(也就是找到最优的解,例如爬上山顶)记在心上,然后给自己定个短期目标(也就是每走一步,就离远大的目标更近一点),脚踏实地,心无旁贷,像个蜗牛一样,一步一步往上爬,支撑它的唯一信念是:只要我每一步都爬高一点,那么积跬步,肯定能达到自己人生的巅峰,尽享山登绝顶我为峰的豪迈与忘我。

       另外需要考虑的情况是,如果代价函数是凸函数,那么就存在全局最优解,方圆五百里就只有一个山峰,那命中注定了,它就是你要找的唯一了。但如果是非凸的,那么就会有很多局部最优的解,有一望无际的山峰,人的视野是伟大的也是渺小的,你不知道哪个山峰才是最高的,可能你会被命运作弄,很无辜的陷入一个局部最优里面,坐井观天,以为自己找到的就是最好的。没想到山外有山,人外有人,光芒总在未知的远处默默绽放。但也许命运眷恋善良的你,带给你的总是最好的归宿。也有很多不信命的人,觉得人定胜天的人,誓要找到最好的,否则不会罢休,永不向命运妥协,除非自己有一天累了,倒下了,也要靠剩下的一口气,迈出一口气能支撑的路程。

对了,上点干货吧(代码是复制别人的,他用的是python2.7,我用的python3.5没跑通他这个代码,如果哪位大神用3.5的跑通了烦请告诉我一下,谢谢)  我自己调好了,py3可以跑了(下面是已经更新的code)


主要函数:logRegression.py

from numpy import *
import matplotlib.pyplot as plt
import time

# calculate the sigmoid function
def sigmoid(inX):
    return 1.0 / (1 + exp(-inX))


# train a logistic regression model using some optional optimize algorithm
# input: train_x is a mat datatype, each row stands for one sample
#        train_y is mat datatype too, each row is the corresponding label
#        opts is optimize option include step and maximum number of iterations
def trainLogRegres(train_x, train_y, opts):
    # calculate training time
    startTime = time.time()

    numSamples, numFeatures = shape(train_x)
    alpha = opts['alpha'];
    maxIter = opts['maxIter']
    weights = ones((numFeatures, 1))

    # optimize through gradient descent algorilthm
    for k in range(maxIter):
        if opts['optimizeType'] == 'gradDescent':  # gradient descent algorilthm
            output = sigmoid(train_x * weights)
            error = train_y - output
            weights = weights + alpha * train_x.transpose() * error
        elif opts['optimizeType'] == 'stocGradDescent':  # stochastic gradient descent
            for i in range(numSamples):
                output = sigmoid(train_x[i, :] * weights)
                error = train_y[i, 0] - output
                weights = weights + alpha * train_x[i, :].transpose() * error
        elif opts['optimizeType'] == 'smoothStocGradDescent':  # smooth stochastic gradient descent
            # randomly select samples to optimize for reducing cycle fluctuations
            dataIndex = list(range(numSamples))
            for i in range(numSamples):
                alpha = 4.0 / (1.0 + k + i) + 0.01
                randIndex = int(random.uniform(0, len(dataIndex)))
                output = sigmoid(train_x[randIndex, :] * weights)
                error = train_y[randIndex, 0] - output
                weights = weights + alpha * train_x[randIndex, :].transpose() * error
                del (dataIndex[randIndex])  # during one interation, delete the optimized sample
        else:
            raise NameError('Not support optimize method type!')

    print('Congratulations, training complete! Took %fs!' % (time.time() - startTime))

    return weights


# test your trained Logistic Regression model given test set
def testLogRegres(weights, test_x, test_y):
    numSamples, numFeatures = shape(test_x)
    matchCount = 0
    for i in range(numSamples):
        predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5
        if predict == bool(test_y[i, 0]):
            matchCount += 1
    accuracy = float(matchCount) / numSamples
    return accuracy


# show your trained logistic regression model only available with 2-D data
def showLogRegres(weights, train_x, train_y):
    # notice: train_x and train_y is mat datatype
    numSamples, numFeatures = shape(train_x)
    if numFeatures != 3:
        print("Sorry! I can not draw because the dimension of your data is not 2!")

        return 1

        # draw all samples
    for i in range(numSamples):
        if int(train_y[i, 0]) == 0:
            plt.plot(train_x[i, 1], train_x[i, 2], 'or')
        elif int(train_y[i, 0]) == 1:
            plt.plot(train_x[i, 1], train_x[i, 2], 'ob')

            # draw the classify line
    min_x = min(train_x[:, 1])[0, 0]
    max_x = max(train_x[:, 1])[0, 0]
    weights = weights.getA()  # convert mat to array
    y_min_x = float(-weights[0] - weights[1] * min_x) / weights[2]
    y_max_x = float(-weights[0] - weights[1] * max_x) / weights[2]
    plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g')
    plt.xlabel('X1');
    plt.ylabel('X2')
    plt.show()

def loadData():
    train_x = []
    train_y = []
    fileIn = open('lr.txt',encoding="utf-8")
    for line in fileIn.readlines():
        lineArr = line.strip().split()
        print("++++:",lineArr[0])
        print("---",float(lineArr[1]))
        train_x.append([1.0, float(lineArr[0]), float(lineArr[1])])
        train_y.append(float(lineArr[2]))
    return mat(train_x), mat(train_y).transpose()


## step 1: load data
print
"step 1: load data..."
train_x, train_y = loadData()
test_x = train_x;
test_y = train_y

## step 2: training...
print("step 2: training...")

opts = {'alpha': 0.01, 'maxIter': 20, 'optimizeType': 'smoothStocGradDescent'}
optimalWeights = trainLogRegres(train_x, train_y, opts)

## step 3: testing
print("step 3: testing...")

accuracy = testLogRegres(optimalWeights, test_x, test_y)

## step 4: show the result
print("step 4: show the result...")

print('The classify accuracy is: %.3f%%' % (accuracy * 100))

showLogRegres(optimalWeights, train_x, train_y)

所需数据:
lr.txt

-0.017612   14.053064   0  
-1.395634   4.662541    1  
-0.752157   6.538620    0  
-1.322371   7.152853    0  
0.423363    11.054677   0  
0.406704    7.067335    1  
0.667394    12.741452   0  
-2.460150   6.866805    1  
0.569411    9.548755    0  
-0.026632   10.427743   0  
0.850433    6.920334    1  
1.347183    13.175500   0  
1.176813    3.167020    1  
-1.781871   9.097953    0  
-0.566606   5.749003    1  
0.931635    1.589505    1  
-0.024205   6.151823    1  
-0.036453   2.690988    1  
-0.196949   0.444165    1  
1.014459    5.754399    1  
1.985298    3.230619    1  
-1.693453   -0.557540   1  
-0.576525   11.778922   0  
-0.346811   -1.678730   1  
-2.124484   2.672471    1  
1.217916    9.597015    0  
-0.733928   9.098687    0  
-3.642001   -1.618087   1  
0.315985    3.523953    1  
1.416614    9.619232    0  
-0.386323   3.989286    1  
0.556921    8.294984    1  
1.224863    11.587360   0  
-1.347803   -2.406051   1  
1.196604    4.951851    1  
0.275221    9.543647    0  
0.470575    9.332488    0  
-1.889567   9.542662    0  
-1.527893   12.150579   0  
-1.185247   11.309318   0  
-0.445678   3.297303    1  
1.042222    6.105155    1  
-0.618787   10.320986   0  
1.152083    0.548467    1  
0.828534    2.676045    1  
-1.237728   10.549033   0  
-0.683565   -2.166125   1  
0.229456    5.921938    1  
-0.959885   11.555336   0  
0.492911    10.993324   0  
0.184992    8.721488    0  
-0.355715   10.325976   0  
-0.397822   8.058397    0  
0.824839    13.730343   0  
1.507278    5.027866    1  
0.099671    6.835839    1  
-0.344008   10.717485   0  
1.785928    7.718645    1  
-0.918801   11.560217   0  
-0.364009   4.747300    1  
-0.841722   4.119083    1  
0.490426    1.960539    1  
-0.007194   9.075792    0  
0.356107    12.447863   0  
0.342578    12.281162   0  
-0.810823   -1.466018   1  
2.530777    6.476801    1  
1.296683    11.607559   0  
0.475487    12.040035   0  
-0.783277   11.009725   0  
0.074798    11.023650   0  
-1.337472   0.468339    1  
-0.102781   13.763651   0  
-0.147324   2.874846    1  
0.518389    9.887035    0  
1.015399    7.571882    0  
-1.658086   -0.027255   1  
1.319944    2.171228    1  
2.056216    5.019981    1  
-0.851633   4.375691    1  
-1.510047   6.061992    0  
-1.076637   -3.181888   1  
1.821096    10.283990   0  
3.010150    8.401766    1  
-1.099458   1.688274    1  
-0.834872   -1.733869   1  
-0.846637   3.849075    1  
1.400102    12.628781   0  
1.752842    5.468166    1  
0.078557    0.059736    1  
0.089392    -0.715300   1  
1.825662    12.693808   0  
0.197445    9.744638    0  
0.126117    0.922311    1  
-0.679797   1.220530    1  
0.677983    2.556666    1  
0.761349    10.693862   0  
-2.168791   0.143632    1  
1.388610    9.341997    0  
0.317029    14.739025   0  





猜你喜欢

转载自blog.csdn.net/txbsw/article/details/79085814
今日推荐