2017-2018-2偏微分方程复习题解析3

Problem: Suppose that the function $f:\bbR^d\to\bbR$ is radial, that is, for any $x,y\in\bbR^d$ with $|x|=|y|$, we have $f(x)=f(y)$. Show that the Fourier transform $\calF(\xi)$ is also radial.

Proof: For any $\xi,\eta\in\bbR^d$ with $|\xi|=|\eta|$, there exists an orthogonal matrix $A$ such that $\eta=A\xi\ra \eta^T=\xi^T A^T$. Thus, $$\beex\bea \calF f(\eta) &=\int_{\bbR^d} f(x) \e^{-\i \eta^Tx}\rd x\\ &=\int_{\bbR^d} f(x) \e^{-\i \xi^T A^T x}\rd x\\ &=\int_{\bbR^d} f(Ay) \e^{-\i \xi^T y}\rd y\\ & \qx{A^TA=E\ra A^T=A^{-1},\ y=A^T x=A^{-1}x\ra x=Ay}\\ &=\int_{\bbR^d} f(y) \e^{-\i \xi^Ty}\rd y\qwz{$f$ is radial}\\ &=\calF f(\xi). \eea\eeex$$

猜你喜欢

转载自www.cnblogs.com/zhangzujin/p/9012167.html
今日推荐