JDK6中HashMap源码解读


引用一张网友的图:

首先,理解这个数据结构,那么HashMap就理解了一半。重点看Entry的定义:

static class Entry<K, V> implements Map.Entry<K, V> {
		final K key;
		V value;
		Entry<K, V> next;   //这个很重要,也就是链表结构的关键。 在Entry内部持有一个Entry对象,行程一个链表结构。
		final int hash;

		public final V setValue(V newValue) {
			V oldValue = value;
			value = newValue;
			return oldValue;
		}

再看put方法:

public V put(K key, V value) {
		if (key == null)
//这里有putForNullKey方法,HashMap支持null为键值,key=null的时候hash为0
			return putForNullKey(value);
//这里hash这个函数很有意思,主要是用于计算hashcode的hash值,再根据indexFor方法定义table中存放的位置。
		int hash = hash(key.hashCode());
		//定义捅的位置
		int i = indexFor(hash, table.length);
		//找到待添加元素的位置,如果没有,就不用执行for函数了
		for (Entry<K, V> e = table[i]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
				V oldValue = e.value;
				e.value = value;
				e.recordAccess(this);
				return oldValue;
			}
		}
		//for循环中没有找到有hash相同的元素,则添加一个新的Entry
		modCount++;
		//hash值,key,value,桶的位置
		addEntry(hash, key, value, i);
		return null;
	}

再看一个关键的addEntry方法:

void addEntry(int hash, K key, V value, int bucketIndex) {
		//没啥好说的,直接添加一个table的桶位置(把table堪称一个bucket桶。。。)
		Entry<K, V> e = table[bucketIndex];
		//定位table的位置,然后,创建一个entry放在这个问题。
		table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
		//在table这个大桶中添加了一个元素,则size个数增加1个,如果这个个数大于门限值,则捅扩大一倍!
		if (size++ >= threshold)
			resize(2 * table.length);
	}

addEntry方法会引起扩容,每次添加后size加1!如果个数超出门限值,扩容都是以2的指数,因为每次都是扩大2倍。在jdk8中这源码有所改变。

再看扩容代码:扩容会创建一个新的数组,这是开销的主要来源

void resize(int newCapacity) {
		//扩容
		Entry[] oldTable = table;
		int oldCapacity = oldTable.length;
		if (oldCapacity == MAXIMUM_CAPACITY) {
			threshold = Integer.MAX_VALUE;
			return;
		}

		//这里创建一个新的容量的Entry。
		Entry[] newTable = new Entry[newCapacity];
		//把之前的元素全部存入到新的newTable中
		transfer(newTable);
		//table变量指向新的Table
		table = newTable;
		//更新门限值。
		threshold = (int) (newCapacity * loadFactor);
	}

再看一个get方法:get方法中主要是因为HashMap的数据结构所致,在查询的时候,先找到table所在位置,也就是桶的位置,然后再遍历桶中链表中元素,如果元素的hash值相同,那么还需要进一步判断key的值,也就是equals方法。

	public V get(Object key) {
		if (key == null)
			return getForNullKey();
		//调用hashcode
		int hash = hash(key.hashCode());
		//通过hash值找到在table存储的位置,同理getForNullKey,位置相同,再遍历里面的链表结构,当hash相同,还要进一步判断key的值是否相同。
		for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
				return e.value;
		}
		return null;
	}

	/**
	 * Offloaded version of get() to look up null keys. Null keys map to index 0.
	 * This null case is split out into separate methods for the sake of performance
	 * in the two most commonly used operations (get and put), but incorporated with
	 * conditionals in others.
	 * 默认key为null的哈希索引为0,所以这里取table[0],e.next也是一个Entry<K, V>对象,
	 * 这里,遍历e的链表头不为null,再调用下key的==来判断值是否相等。
	 * 其实这里就刚好说明2个问题,一,递增都是以table结构来存储数据,同时table里面的元素又是一个链表结构。
	 * 二,key的哈希相同的会放在同一个table的元素中,table元素是个链表结构,当key的哈希相同(存储地址在table的同一个位置),还要判断key的值是否相同。
	 *这也就是重写了hashcode还要重新equals方法
	 * 
	 */
	private V getForNullKey() {
		for (Entry<K, V> e = table[0]; e != null; e = e.next) {
			if (e.key == null)
				return e.value;
		}
		return null;
	}

至此,源码就基本差不多了。到了jdk8之后,增加了红黑色来代替链表结构。本质上,这是一个安全问题。链表的查询是线性的,会影响存储的效率。如果构造hash值相当的数据存储到HashMap中,将会导致cpu性能急剧被占用,而导致服务异常。

最后贴上jdk1.6.0_45中源码:


public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable {

	/**
	 * The default initial capacity - MUST be a power of two.
	 */
	static final int DEFAULT_INITIAL_CAPACITY = 16;

	/**
	 * The maximum capacity, used if a higher value is implicitly specified by
	 * either of the constructors with arguments. MUST be a power of two <= 1<<30.
	 */
	static final int MAXIMUM_CAPACITY = 1 << 30;

	/**
	 * The load factor used when none specified in constructor.
	 */
	static final float DEFAULT_LOAD_FACTOR = 0.75f;

	/**
	 * The table, resized as necessary. Length MUST Always be a power of two.
	 */
	transient Entry[] table;

	/**
	 * The number of key-value mappings contained in this map.
	 */
	transient int size;

	/**
	 * The next size value at which to resize (capacity * load factor).
	 * 
	 * @serial 门限值
	 */
	int threshold;

	/**
	 * The load factor for the hash table.
	 * 负载因子表示一个散列表的空间的使用程度,有这样一个公式:initailCapacity*loadFactor=HashMap的容量。
	 * 
	 * 所以负载因子越大则散列表的装填程度越高,也就是能容纳更多的元素,元素多了,链表大了,所以此时索引效率就会降低。
	 * 
	 * 反之,负载因子越小则链表中的数据量就越稀疏,此时会对空间造成烂费,但是此时索引效率高。
	 * 
	 * @serial
	 */
	final float loadFactor;

	/**
	 * The number of times this HashMap has been structurally modified Structural
	 * modifications are those that change the number of mappings in the HashMap or
	 * otherwise modify its internal structure (e.g., rehash). This field is used to
	 * make iterators on Collection-views of the HashMap fail-fast. (See
	 * ConcurrentModificationException).
	 */
	transient volatile int modCount;

	/**
	 * Constructs an empty <tt>HashMap</tt> with the specified initial capacity and
	 * load factor.
	 *
	 * @param initialCapacity
	 *            the initial capacity
	 * @param loadFactor
	 *            the load factor
	 * @throws IllegalArgumentException
	 *             if the initial capacity is negative or the load factor is
	 *             nonpositive
	 */
	public HashMap(int initialCapacity, float loadFactor) {
		if (initialCapacity < 0)
			throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
		if (initialCapacity > MAXIMUM_CAPACITY)
			initialCapacity = MAXIMUM_CAPACITY;
		if (loadFactor <= 0 || Float.isNaN(loadFactor))
			throw new IllegalArgumentException("Illegal load factor: " + loadFactor);

		// Find a power of 2 >= initialCapacity
		int capacity = 1;
		while (capacity < initialCapacity)
			//如果指定的初始化容量大于默认的容量,则扩容2倍
			capacity <<= 1;

		this.loadFactor = loadFactor;
		//门限值
		threshold = (int) (capacity * loadFactor);
		//底层的存在kv使用entry数组
		table = new Entry[capacity];
		init();
	}

	/**
	 * Constructs an empty <tt>HashMap</tt> with the specified initial capacity and
	 * the default load factor (0.75).
	 *
	 * @param initialCapacity
	 *            the initial capacity.
	 * @throws IllegalArgumentException
	 *             if the initial capacity is negative.
	 */
	public HashMap(int initialCapacity) {
		this(initialCapacity, DEFAULT_LOAD_FACTOR);
	}

	/**
	 * Constructs an empty <tt>HashMap</tt> with the default initial capacity (16)
	 * and the default load factor (0.75).
	 */
	public HashMap() {
		this.loadFactor = DEFAULT_LOAD_FACTOR;
		threshold = (int) (DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
		table = new Entry[DEFAULT_INITIAL_CAPACITY];
		init();
	}

	/**
	 * Constructs a new <tt>HashMap</tt> with the same mappings as the specified
	 * <tt>Map</tt>. The <tt>HashMap</tt> is created with default load factor (0.75)
	 * and an initial capacity sufficient to hold the mappings in the specified
	 * <tt>Map</tt>.
	 *
	 * @param m
	 *            the map whose mappings are to be placed in this map
	 * @throws NullPointerException
	 *             if the specified map is null
	 */
	public HashMap(Map<? extends K, ? extends V> m) {
		this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
		putAllForCreate(m);
	}

	// internal utilities

	/**
	 * Initialization hook for subclasses. This method is called in all constructors
	 * and pseudo-constructors (clone, readObject) after HashMap has been
	 * initialized but before any entries have been inserted. (In the absence of
	 * this method, readObject would require explicit knowledge of subclasses.)
	 */
	void init() {
	}

	/**
	 * Applies a supplemental hash function to a given hashCode, which defends
	 * against poor quality hash functions. This is critical because HashMap uses
	 * power-of-two length hash tables, that otherwise encounter collisions for
	 * hashCodes that do not differ in lower bits. Note: Null keys always map to
	 * hash 0, thus index 0.
	 * hash计算方法,高位移动
	 * 这里需要将高位数据移位到低位进行异或运算呢?这是因为有些数据计算出的哈希值差异主要在高位,而 HashMap 里的哈希寻址是忽略容量以上的高位的,那么这种处理就可以有效避免类似情况下的哈希碰撞。
	 */
	static int hash(int h) {
		// This function ensures that hashCodes that differ only by
		// constant multiples at each bit position have a bounded
		// number of collisions (approximately 8 at default load factor).
		h ^= (h >>> 20) ^ (h >>> 12);
		return h ^ (h >>> 7) ^ (h >>> 4);
	}

	/**
	 * Returns index for hash code h.
	 */
	static int indexFor(int h, int length) {
		return h & (length - 1);
	}

	/**
	 * Returns the number of key-value mappings in this map.
	 *
	 * @return the number of key-value mappings in this map
	 */
	public int size() {
		return size;
	}

	/**
	 * Returns <tt>true</tt> if this map contains no key-value mappings.
	 *
	 * @return <tt>true</tt> if this map contains no key-value mappings
	 */
	public boolean isEmpty() {
		return size == 0;
	}

	/**
	 * Returns the value to which the specified key is mapped, or {@code null} if
	 * this map contains no mapping for the key.
	 *
	 * <p>
	 * More formally, if this map contains a mapping from a key {@code k} to a value
	 * {@code v} such that {@code (key==null ? k==null :
	 * key.equals(k))}, then this method returns {@code v}; otherwise it returns
	 * {@code null}. (There can be at most one such mapping.)
	 *
	 * <p>
	 * A return value of {@code null} does not <i>necessarily</i> indicate that the
	 * map contains no mapping for the key; it's also possible that the map
	 * explicitly maps the key to {@code null}. The {@link #containsKey containsKey}
	 * operation may be used to distinguish these two cases.
	 *
	 * @see #put(Object, Object)
	 */
	public V get(Object key) {
		if (key == null)
			return getForNullKey();
		//调用hashcode
		int hash = hash(key.hashCode());
		//通过hash值找到在table存储的位置,同理getForNullKey,位置相同,再遍历里面的链表结构,当hash相同,还要进一步判断key的值是否相同。
		for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
				return e.value;
		}
		return null;
	}

	/**
	 * Offloaded version of get() to look up null keys. Null keys map to index 0.
	 * This null case is split out into separate methods for the sake of performance
	 * in the two most commonly used operations (get and put), but incorporated with
	 * conditionals in others.
	 * 默认key为null的哈希索引为0,所以这里取table[0],e.next也是一个Entry<K, V>对象,
	 * 这里,遍历e的链表头不为null,再调用下key的==来判断值是否相等。
	 * 其实这里就刚好说明2个问题,一,递增都是以table结构来存储数据,同时table里面的元素又是一个链表结构。
	 * 二,key的哈希相同的会放在同一个table的元素中,table元素是个链表结构,当key的哈希相同(存储地址在table的同一个位置),还要判断key的值是否相同。
	 *这也就是重写了hashcode还要重新equals方法
	 * 
	 */
	private V getForNullKey() {
		for (Entry<K, V> e = table[0]; e != null; e = e.next) {
			if (e.key == null)
				return e.value;
		}
		return null;
	}

	/**
	 * Returns <tt>true</tt> if this map contains a mapping for the specified key.
	 *
	 * @param key
	 *            The key whose presence in this map is to be tested
	 * @return <tt>true</tt> if this map contains a mapping for the specified key.
	 */
	public boolean containsKey(Object key) {
		return getEntry(key) != null;
	}

	/**
	 * Returns the entry associated with the specified key in the HashMap. Returns
	 * null if the HashMap contains no mapping for the key.
	 */
	final Entry<K, V> getEntry(Object key) {
		int hash = (key == null) ? 0 : hash(key.hashCode());
		for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
				return e;
		}
		return null;
	}

	/**
	 * Associates the specified value with the specified key in this map. If the map
	 * previously contained a mapping for the key, the old value is replaced.
	 *
	 * @param key
	 *            key with which the specified value is to be associated
	 * @param value
	 *            value to be associated with the specified key
	 * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if
	 *         there was no mapping for <tt>key</tt>. (A <tt>null</tt> return can
	 *         also indicate that the map previously associated <tt>null</tt> with
	 *         <tt>key</tt>.)
	 */
	public V put(K key, V value) {
		if (key == null)
			return putForNullKey(value);
		int hash = hash(key.hashCode());
		//定义捅的位置
		int i = indexFor(hash, table.length);
		//找到待添加元素的位置,如果没有,就不用执行for函数了
		for (Entry<K, V> e = table[i]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
				V oldValue = e.value;
				e.value = value;
				e.recordAccess(this);
				return oldValue;
			}
		}
		//for循环中没有找到有hash相同的元素,则添加一个新的Entry
		modCount++;
		//hash值,key,value,桶的位置
		addEntry(hash, key, value, i);
		return null;
	}

	/**
	 * Offloaded version of put for null keys
	 * 存放null值
	 */
	private V putForNullKey(V value) {
		for (Entry<K, V> e = table[0]; e != null; e = e.next) {
			if (e.key == null) {
				V oldValue = e.value;
				e.value = value;
				e.recordAccess(this);
				return oldValue;
			}
		}
		modCount++;
		addEntry(0, null, value, 0);
		return null;
	}

	/**
	 * This method is used instead of put by constructors and pseudoconstructors
	 * (clone, readObject). It does not resize the table, check for comodification,
	 * etc. It calls createEntry rather than addEntry.
	 */
	private void putForCreate(K key, V value) {
		int hash = (key == null) ? 0 : hash(key.hashCode());
		int i = indexFor(hash, table.length);

		/**
		 * Look for preexisting entry for key. This will never happen for clone or
		 * deserialize. It will only happen for construction if the input Map is a
		 * sorted map whose ordering is inconsistent w/ equals.
		 */
		for (Entry<K, V> e = table[i]; e != null; e = e.next) {
			Object k;
			if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
				e.value = value;
				return;
			}
		}

		createEntry(hash, key, value, i);
	}

	private void putAllForCreate(Map<? extends K, ? extends V> m) {
		for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext();) {
			Map.Entry<? extends K, ? extends V> e = i.next();
			putForCreate(e.getKey(), e.getValue());
		}
	}

	/**
	 * Rehashes the contents of this map into a new array with a larger capacity.
	 * This method is called automatically when the number of keys in this map
	 * reaches its threshold.
	 *
	 * If current capacity is MAXIMUM_CAPACITY, this method does not resize the map,
	 * but sets threshold to Integer.MAX_VALUE. This has the effect of preventing
	 * future calls.
	 *
	 * @param newCapacity
	 *            the new capacity, MUST be a power of two; must be greater than
	 *            current capacity unless current capacity is MAXIMUM_CAPACITY (in
	 *            which case value is irrelevant).
	 */
	void resize(int newCapacity) {
		//扩容
		Entry[] oldTable = table;
		int oldCapacity = oldTable.length;
		if (oldCapacity == MAXIMUM_CAPACITY) {
			threshold = Integer.MAX_VALUE;
			return;
		}

		//这里创建一个新的容量的Entry。
		Entry[] newTable = new Entry[newCapacity];
		//把之前的元素全部存入到新的newTable中
		transfer(newTable);
		//table变量指向新的Table
		table = newTable;
		//更新门限值。
		threshold = (int) (newCapacity * loadFactor);
	}

	/**
	 * Transfers all entries from current table to newTable.
	 */
	void transfer(Entry[] newTable) {
		Entry[] src = table;
		int newCapacity = newTable.length;
		for (int j = 0; j < src.length; j++) {
			Entry<K, V> e = src[j];
			if (e != null) {
				src[j] = null;
				do {
					Entry<K, V> next = e.next;
					int i = indexFor(e.hash, newCapacity);
					e.next = newTable[i];
					newTable[i] = e;
					e = next;
				} while (e != null);
			}
		}
	}

	/**
	 * Copies all of the mappings from the specified map to this map. These mappings
	 * will replace any mappings that this map had for any of the keys currently in
	 * the specified map.
	 *
	 * @param m
	 *            mappings to be stored in this map
	 * @throws NullPointerException
	 *             if the specified map is null
	 */
	public void putAll(Map<? extends K, ? extends V> m) {
		int numKeysToBeAdded = m.size();
		if (numKeysToBeAdded == 0)
			return;

		/*
		 * Expand the map if the map if the number of mappings to be added is greater
		 * than or equal to threshold. This is conservative; the obvious condition is
		 * (m.size() + size) >= threshold, but this condition could result in a map with
		 * twice the appropriate capacity, if the keys to be added overlap with the keys
		 * already in this map. By using the conservative calculation, we subject
		 * ourself to at most one extra resize.
		 */
		if (numKeysToBeAdded > threshold) {
			int targetCapacity = (int) (numKeysToBeAdded / loadFactor + 1);
			if (targetCapacity > MAXIMUM_CAPACITY)
				targetCapacity = MAXIMUM_CAPACITY;
			int newCapacity = table.length;
			while (newCapacity < targetCapacity)
				//扩容一倍
				newCapacity <<= 1;
			if (newCapacity > table.length)
				resize(newCapacity);
		}

		for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext();) {
			Map.Entry<? extends K, ? extends V> e = i.next();
			put(e.getKey(), e.getValue());
		}
	}

	/**
	 * Removes the mapping for the specified key from this map if present.
	 *
	 * @param key
	 *            key whose mapping is to be removed from the map
	 * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if
	 *         there was no mapping for <tt>key</tt>. (A <tt>null</tt> return can
	 *         also indicate that the map previously associated <tt>null</tt> with
	 *         <tt>key</tt>.)
	 */
	public V remove(Object key) {
		//删除元素,如果不存在就返回null
		Entry<K, V> e = removeEntryForKey(key);
		return (e == null ? null : e.value);
	}

	/**
	 * Removes and returns the entry associated with the specified key in the
	 * HashMap. Returns null if the HashMap contains no mapping for this key.
	 */
	final Entry<K, V> removeEntryForKey(Object key) {
		int hash = (key == null) ? 0 : hash(key.hashCode());
		int i = indexFor(hash, table.length);
		//删除的时候先根据hash定位大table中位置,如果为空,就返回e,e也是等于table[i]等于null
		Entry<K, V> prev = table[i];
		Entry<K, V> e = prev;

		//如果在table有元素。
		while (e != null) {
			Entry<K, V> next = e.next;
			Object k;
			if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
				modCount++;
				size--;
				if (prev == e)
					table[i] = next;
				else
					prev.next = next;
				e.recordRemoval(this);
				return e;
			}
			prev = e;
			e = next;
		}

		return e;
	}

	/**
	 * Special version of remove for EntrySet.
	 */
	final Entry<K, V> removeMapping(Object o) {
		if (!(o instanceof Map.Entry))
			return null;

		Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
		Object key = entry.getKey();
		int hash = (key == null) ? 0 : hash(key.hashCode());
		int i = indexFor(hash, table.length);
		Entry<K, V> prev = table[i];
		Entry<K, V> e = prev;

		while (e != null) {
			Entry<K, V> next = e.next;
			if (e.hash == hash && e.equals(entry)) {
				modCount++;
				size--;
				if (prev == e)
					table[i] = next;
				else
					prev.next = next;
				e.recordRemoval(this);
				return e;
			}
			prev = e;
			e = next;
		}

		return e;
	}

	/**
	 * Removes all of the mappings from this map. The map will be empty after this
	 * call returns.
	 */
	public void clear() {
		modCount++;
		Entry[] tab = table;
		for (int i = 0; i < tab.length; i++)
			tab[i] = null;
		size = 0;
	}

	/**
	 * Returns <tt>true</tt> if this map maps one or more keys to the specified
	 * value.
	 *
	 * @param value
	 *            value whose presence in this map is to be tested
	 * @return <tt>true</tt> if this map maps one or more keys to the specified
	 *         value
	 */
	public boolean containsValue(Object value) {
		if (value == null)
			return containsNullValue();

		Entry[] tab = table;
		for (int i = 0; i < tab.length; i++)
			for (Entry e = tab[i]; e != null; e = e.next)
				if (value.equals(e.value))
					return true;
		return false;
	}

	/**
	 * Special-case code for containsValue with null argument
	 */
	private boolean containsNullValue() {
		Entry[] tab = table;
		for (int i = 0; i < tab.length; i++)
			for (Entry e = tab[i]; e != null; e = e.next)
				if (e.value == null)
					return true;
		return false;
	}

	/**
	 * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and values
	 * themselves are not cloned.
	 *
	 * @return a shallow copy of this map
	 */
	public Object clone() {
		HashMap<K, V> result = null;
		try {
			result = (HashMap<K, V>) super.clone();
		} catch (CloneNotSupportedException e) {
			// assert false;
		}
		result.table = new Entry[table.length];
		result.entrySet = null;
		result.modCount = 0;
		result.size = 0;
		result.init();
		result.putAllForCreate(this);

		return result;
	}

	static class Entry<K, V> implements Map.Entry<K, V> {
		final K key;
		V value;
		Entry<K, V> next;
		final int hash;

		/**
		 * Creates new entry.
		 */
		Entry(int h, K k, V v, Entry<K, V> n) {
			value = v;
			next = n;
			key = k;
			hash = h;
		}

		public final K getKey() {
			return key;
		}

		public final V getValue() {
			return value;
		}

		public final V setValue(V newValue) {
			V oldValue = value;
			value = newValue;
			return oldValue;
		}

		public final boolean equals(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry e = (Map.Entry) o;
			Object k1 = getKey();
			Object k2 = e.getKey();
			if (k1 == k2 || (k1 != null && k1.equals(k2))) {
				Object v1 = getValue();
				Object v2 = e.getValue();
				if (v1 == v2 || (v1 != null && v1.equals(v2)))
					return true;
			}
			return false;
		}

		public final int hashCode() {
			return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode());
		}

		public final String toString() {
			return getKey() + "=" + getValue();
		}

		/**
		 * This method is invoked whenever the value in an entry is overwritten by an
		 * invocation of put(k,v) for a key k that's already in the HashMap.
		 */
		void recordAccess(HashMap<K, V> m) {
		}

		/**
		 * This method is invoked whenever the entry is removed from the table.
		 */
		void recordRemoval(HashMap<K, V> m) {
		}
	}

	/**
	 * Adds a new entry with the specified key, value and hash code to the specified
	 * bucket. It is the responsibility of this method to resize the table if
	 * appropriate.
	 *
	 * Subclass overrides this to alter the behavior of put method.
	 */
	void addEntry(int hash, K key, V value, int bucketIndex) {
		//没啥好说的,直接添加一个table的桶位置(把table堪称一个bucket桶。。。)
		Entry<K, V> e = table[bucketIndex];
		//定位table的位置,然后,创建一个entry放在这个问题。
		table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
		//在table这个大桶中添加了一个元素,则size个数增加1个,如果这个个数大于门限值,则捅扩大一倍!
		if (size++ >= threshold)
			resize(2 * table.length);
	}

	/**
	 * Like addEntry except that this version is used when creating entries as part
	 * of Map construction or "pseudo-construction" (cloning, deserialization). This
	 * version needn't worry about resizing the table.
	 *
	 * Subclass overrides this to alter the behavior of HashMap(Map), clone, and
	 * readObject.
	 */
	void createEntry(int hash, K key, V value, int bucketIndex) {
		Entry<K, V> e = table[bucketIndex];
		table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
		//和addEntry的区别是,最后没有判断是否要扩容
		size++;
	}

	private abstract class HashIterator<E> implements Iterator<E> {
		Entry<K, V> next; // next entry to return
		int expectedModCount; // For fast-fail
		int index; // current slot
		Entry<K, V> current; // current entry

		HashIterator() {
			expectedModCount = modCount;
			if (size > 0) { // advance to first entry
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
		}

		public final boolean hasNext() {
			return next != null;
		}

		final Entry<K, V> nextEntry() {
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Entry<K, V> e = next;
			if (e == null)
				throw new NoSuchElementException();

			if ((next = e.next) == null) {
				Entry[] t = table;
				while (index < t.length && (next = t[index++]) == null)
					;
			}
			current = e;
			return e;
		}

		public void remove() {
			if (current == null)
				throw new IllegalStateException();
			if (modCount != expectedModCount)
				throw new ConcurrentModificationException();
			Object k = current.key;
			current = null;
			HashMap.this.removeEntryForKey(k);
			expectedModCount = modCount;
		}

	}

	private final class ValueIterator extends HashIterator<V> {
		public V next() {
			return nextEntry().value;
		}
	}

	private final class KeyIterator extends HashIterator<K> {
		public K next() {
			return nextEntry().getKey();
		}
	}

	private final class EntryIterator extends HashIterator<Map.Entry<K, V>> {
		public Map.Entry<K, V> next() {
			return nextEntry();
		}
	}

	// Subclass overrides these to alter behavior of views' iterator() method
	Iterator<K> newKeyIterator() {
		return new KeyIterator();
	}

	Iterator<V> newValueIterator() {
		return new ValueIterator();
	}

	Iterator<Map.Entry<K, V>> newEntryIterator() {
		return new EntryIterator();
	}

	// Views

	private transient Set<Map.Entry<K, V>> entrySet = null;

	/**
	 * Returns a {@link Set} view of the keys contained in this map. The set is
	 * backed by the map, so changes to the map are reflected in the set, and
	 * vice-versa. If the map is modified while an iteration over the set is in
	 * progress (except through the iterator's own <tt>remove</tt> operation), the
	 * results of the iteration are undefined. The set supports element removal,
	 * which removes the corresponding mapping from the map, via the
	 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
	 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support the
	 * <tt>add</tt> or <tt>addAll</tt> operations.
	 */
	public Set<K> keySet() {
		Set<K> ks = keySet;
		return (ks != null ? ks : (keySet = new KeySet()));
	}

	private final class KeySet extends AbstractSet<K> {
		public Iterator<K> iterator() {
			return newKeyIterator();
		}

		public int size() {
			return size;
		}

		public boolean contains(Object o) {
			return containsKey(o);
		}

		public boolean remove(Object o) {
			return HashMap.this.removeEntryForKey(o) != null;
		}

		public void clear() {
			HashMap.this.clear();
		}
	}

	/**
	 * Returns a {@link Collection} view of the values contained in this map. The
	 * collection is backed by the map, so changes to the map are reflected in the
	 * collection, and vice-versa. If the map is modified while an iteration over
	 * the collection is in progress (except through the iterator's own
	 * <tt>remove</tt> operation), the results of the iteration are undefined. The
	 * collection supports element removal, which removes the corresponding mapping
	 * from the map, via the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
	 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt> operations. It does
	 * not support the <tt>add</tt> or <tt>addAll</tt> operations.
	 */
	public Collection<V> values() {
		Collection<V> vs = values;
		return (vs != null ? vs : (values = new Values()));
	}

	private final class Values extends AbstractCollection<V> {
		public Iterator<V> iterator() {
			return newValueIterator();
		}

		public int size() {
			return size;
		}

		public boolean contains(Object o) {
			return containsValue(o);
		}

		public void clear() {
			HashMap.this.clear();
		}
	}

	/**
	 * Returns a {@link Set} view of the mappings contained in this map. The set is
	 * backed by the map, so changes to the map are reflected in the set, and
	 * vice-versa. If the map is modified while an iteration over the set is in
	 * progress (except through the iterator's own <tt>remove</tt> operation, or
	 * through the <tt>setValue</tt> operation on a map entry returned by the
	 * iterator) the results of the iteration are undefined. The set supports
	 * element removal, which removes the corresponding mapping from the map, via
	 * the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
	 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not support the
	 * <tt>add</tt> or <tt>addAll</tt> operations.
	 *
	 * @return a set view of the mappings contained in this map
	 */
	public Set<Map.Entry<K, V>> entrySet() {
		return entrySet0();
	}

	private Set<Map.Entry<K, V>> entrySet0() {
		Set<Map.Entry<K, V>> es = entrySet;
		return es != null ? es : (entrySet = new EntrySet());
	}

	private final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
		public Iterator<Map.Entry<K, V>> iterator() {
			return newEntryIterator();
		}

		public boolean contains(Object o) {
			if (!(o instanceof Map.Entry))
				return false;
			Map.Entry<K, V> e = (Map.Entry<K, V>) o;
			Entry<K, V> candidate = getEntry(e.getKey());
			return candidate != null && candidate.equals(e);
		}

		public boolean remove(Object o) {
			return removeMapping(o) != null;
		}

		public int size() {
			return size;
		}

		public void clear() {
			HashMap.this.clear();
		}
	}

	/**
	 * Save the state of the <tt>HashMap</tt> instance to a stream (i.e., serialize
	 * it).
	 *
	 * @serialData The <i>capacity</i> of the HashMap (the length of the bucket
	 *             array) is emitted (int), followed by the <i>size</i> (an int, the
	 *             number of key-value mappings), followed by the key (Object) and
	 *             value (Object) for each key-value mapping. The key-value mappings
	 *             are emitted in no particular order.
	 */
	private void writeObject(java.io.ObjectOutputStream s) throws IOException {
		Iterator<Map.Entry<K, V>> i = (size > 0) ? entrySet0().iterator() : null;

		// Write out the threshold, loadfactor, and any hidden stuff
		s.defaultWriteObject();

		// Write out number of buckets
		s.writeInt(table.length);

		// Write out size (number of Mappings)
		s.writeInt(size);

		// Write out keys and values (alternating)
		if (i != null) {
			while (i.hasNext()) {
				Map.Entry<K, V> e = i.next();
				s.writeObject(e.getKey());
				s.writeObject(e.getValue());
			}
		}
	}

	private static final long serialVersionUID = 362498820763181265L;

	/**
	 * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e., deserialize
	 * it).
	 */
	private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException {
		// Read in the threshold, loadfactor, and any hidden stuff
		s.defaultReadObject();

		// Read in number of buckets and allocate the bucket array;
		int numBuckets = s.readInt();
		table = new Entry[numBuckets];

		init(); // Give subclass a chance to do its thing.

		// Read in size (number of Mappings)
		int size = s.readInt();

		// Read the keys and values, and put the mappings in the HashMap
		for (int i = 0; i < size; i++) {
			K key = (K) s.readObject();
			V value = (V) s.readObject();
			putForCreate(key, value);
		}
	}

	// These methods are used when serializing HashSets
	int capacity() {
		return table.length;
	}

	float loadFactor() {
		return loadFactor;
	}
}

参考文献:

http://hg.openjdk.java.net/jdk/jdk/file/5b75d7485f2a/src/java.base/share/classes/java/util/HashMap.java

https://blog.csdn.net/luanlouis/article/details/41576373

 

猜你喜欢

转载自blog.csdn.net/mar_ljh/article/details/80944866