浅析xgBoosting的优缺点

Boosting是一种常用的统计学习方法,在训练过程中,通过改变训练样本的权重,学习多个分类器,最终获得最优分类器。在每一轮训练结束之后,降低被正确分类的训练样本权重,增大分类错误的样本权重,多次训练之后,一些被错误分类的训练样本会获得更多关注,而正确的训练样本权重趋近于0,得到多个简单的分类器,通过对这些分类器进行组合,得到一个最终模型。

xgBoosting在传统Boosting的基础上,利用cpu的多线程,引入正则化项,加入剪纸,控制了模型的复杂度。

与GBDT相比,xgBoosting有以下进步:

1)GBDT以传统CART作为基分类器,而xgBoosting支持线性分类器,相当于引入L1和L2正则化项的逻辑回归(分类问题)和线性回归(回归问题);

2)GBDT在优化时只用到一阶导数,xgBoosting对代价函数做了二阶Talor展开,引入了一阶导数和二阶导数;

3)当样本存在缺失值是,xgBoosting能自动学习分裂方向;

4)xgBoosting借鉴RF的做法,支持列抽样,这样不仅能防止过拟合,还能降低计算;

5)xgBoosting的代价函数引入正则化项,控制了模型的复杂度,正则化项包含全部叶子节点的个数,每个叶子节点输出的score的L2模的平方和。从贝叶斯方差角度考虑,正则项降低了模型的方差,防止模型过拟合;

6)xgBoosting在每次迭代之后,为叶子结点分配学习速率,降低每棵树的权重,减少每棵树的影响,为后面提供更好的学习空间;

7)xgBoosting工具支持并行,但并不是tree粒度上的,而是特征粒度,决策树最耗时的步骤是对特征的值排序,xgBoosting在迭代之前,先进行预排序,存为block结构,每次迭代,重复使用该结构,降低了模型的计算;block结构也为模型提供了并行可能,在进行结点的分裂时,计算每个特征的增益,选增益最大的特征进行下一步分裂,那么各个特征的增益可以开多线程进行;

8)可并行的近似直方图算法,树结点在进行分裂时,需要计算每个节点的增益,若数据量较大,对所有节点的特征进行排序,遍历的得到最优分割点,这种贪心法异常耗时,这时引进近似直方图算法,用于生成高效的分割点,即用分裂后的某种值减去分裂前的某种值,获得增益,为了限制树的增长,引入阈值,当增益大于阈值时,进行分裂;

扫描二维码关注公众号,回复: 2265832 查看本文章

然而,与LightGBM相比,又表现出了明显的不足:

1)xgBoosting采用预排序,在迭代之前,对结点的特征做预排序,遍历选择最优分割点,数据量大时,贪心法耗时,LightGBM方法采用histogram算法,占用的内存低,数据分割的复杂度更低;

2)xgBoosting采用level-wise生成决策树,同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合,但很多叶子节点的分裂增益较低,没必要进行跟进一步的分裂,这就带来了不必要的开销;LightGBM采用深度优化,leaf-wise生长策略,每次从当前叶子中选择增益最大的结点进行分裂,循环迭代,但会生长出更深的决策树,产生过拟合,因此引入了一个阈值进行限制,防止过拟合.


更详细的内容请阅读 https://blog.csdn.net/xwd18280820053/article/details/68927422

猜你喜欢

转载自blog.csdn.net/u013363120/article/details/80195471