神经网络梯度下降算法(gradient descent)笔记

说明:此代码并非个人原创,是学习其他深度学习视频教程后总结所得。
总体思路:
1. 用手写数字识别作实例进行分析。
2. 具体的思路我不是非常清楚,就是用一个深度神经网络,选定n多参数,然后就可以在一定程度上模拟任何有规律的方程或者其他现象。
3. 求解的过程就是不断让真实值贴近预测的值,这时如果差别较大,可以改变参数的权重,还有偏向值。
4. 也就是cost(w, b) = |y - output|^2,此时的w, b赋值比较随机,所以就相当于在抛物线的两侧,若想下降到O点,也就是cost函数值最小,每次可以把x(也就是w, b)的值减去一个值(斜率的倍数,在左为负,在右为正),使值逼近O点,直接上图

cost函数

抛物线

更新值
5. 此方法美其名曰梯度下降算法

结合代码分析:
文章末尾有完整代码
1.初始化权重和偏向,使用numpy.random.randn(m, n),具体意思我想你们应该懂吧  
self.weights = [np.random.randn(m, n) for m, n in zip(sizes[1:], sizes[:-1])] 
self.biases = [np.random.randn(k, 1) for k in sizes[1:]]

2.每一轮epochs后打乱重排
random.shuffle(training_data)

3.更新值
self.update_mini_batch(mini_batch, eta)

4. backpropagation计算偏导值,也就是下图中减号后的偏导部分,不包括前面的伊塔参数,具体自己看吧
delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())


5. 更新w和b值,文章中的代码
self.weights = [w - (eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] 
self.biases = [b - (eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]

6.其他部分比较简单,可以看英文注释,就是求偏导和sigmoid函数等,你们自己看吧。

# author: dragon
# date: 2018-7-21
# -*- coding: utf-8 -*-

import random
import numpy as np

class Network(object):

    def __init__(self, sizes):
        """
        initialization parameter--weights and biases
        :param sizes:
        """
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.weights = [np.random.randn(m, n) for m, n in zip(sizes[1:], sizes[:-1])]
        self.biases = [np.random.randn(k, 1) for k in sizes[1:]]

    def feedforward(self, a):
        """
        function value
        :param a: the input
        :return: sigmoid number
        """
        for w, b in zip(self.weights, self.biases):
            a = sigmoid(np.dot(w, a) + b)
        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
        """
        realize stochastic gradient descent
        :param train_data:
        :param epochs: the number of cycling
        :param mini_batch_size: each cycling sizes
        :param eta: learning rate
        :param test_data:
        :return:None
        """
        if test_data:
            n_test = len(test_data)
        n = len(training_data)
        for j in xrange(epochs):
            random.shuffle(training_data)
            mini_batches = [training_data[k: k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                #evaluate(test_data) is using to evaluate the accuracy
                print "Epoch {0}:{1} / {2}".format(j, self.evaluate(test_data), n_test)
            else:
                print "Epoch {0} complete".format(j)

    def update_mini_batch(self, mini_batch, eta):
        """
        uodate the weights and biases
        :param mini_batch: a lisr of tuple (x, y)
        :param eta: learning rate
        :return: None
        """
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        for x, y in mini_batch:
            #backpropagation funtion is for the sum of derivate
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
            nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            self.weights = [w - (eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
            self.biases = [b - (eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]




    def backprop(self, x, y):
        """return a tuple (nabla_b, nabla_w)"""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x]  # list to store all the activations, layer by layer
        zs = []  # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation) + b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        for l in xrange(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

    def evaluate(self,test_data):
        """
        network's output is assumed to be the index of whichever
        neuron in the final layer has the highest activation
        :param test_data:
        :return: the number of correct
        """
        test_result = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_result)

    def cost_derivative(self, output_activation, y):
        """
        return the derivative
        """
        return (output_activation - y)

def sigmoid(z):
    """  the sigmoid function. """
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))

猜你喜欢

转载自blog.csdn.net/qq_36792525/article/details/81148354