mysql的可重复读REPEATABLE READ隔离级别和幻读

1)mvcc多版本控制提高读写qps

2) REPEATBLE READ 级别并不能完全避免幻读,需要加next key locks,可以使显示锁(select * where * for update   or lock in share mode)


一些文章写到InnoDB的可重复读避免了“幻读”(phantom read),这个说法并不准确。

做个试验:(以下所有试验要注意存储引擎和隔离级别)

mysql>show create table t_bitfly/G;
CREATE TABLE `t_bitfly` (
`id` bigint(20) NOT NULL default ‘0’,
`value` varchar(32) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk

mysql>select @@global.tx_isolation, @@tx_isolation;
+———————–+—————–+
| @@global.tx_isolation | @@tx_isolation  |
+———————–+—————–+
| REPEATABLE-READ       | REPEATABLE-READ |
+———————–+—————–+

试验4-1:

tSessionA                                                     Session B
|
| START TRANSACTION;                           START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| empty set
|                                INSERT INTO t_bitfly VALUES (1, ‘a’);
|                             
|
| SELECT * FROM t_bitfly;
| empty set
|                                                                      COMMIT;
|
| SELECT * FROM t_bitfly;
| empty set
|
| INSERT INTO t_bitfly VALUES (1, ‘a’);
| ERROR 1062 (23000):
| Duplicate entry ‘1’ for key 1
v (shit,刚刚明明告诉我没有这条记录的)

如此就出现了幻读,以为表里没有数据,其实数据已经存在了,傻乎乎的提交后,才发现数据冲突了。

试验4-2:

tSessionA               Session B
|
| START TRANSACTION;           START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                                       INSERT INTO t_bitfly VALUES (2, ‘b’);
|                            
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                               COMMIT;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|
| UPDATE t_bitfly SET value=’z’;
| Rows matched: 2  Changed:2  Warnings: 0
| (怎么多出来一行)
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |z     |
| |    2 |z     |
| +——+——-+
|
v

本事务中第一次读取出一行,做了一次更新后,另一个事务里提交的数据就出现了。也可以看做是一种幻读。

——

那么,InnoDB指出的可以避免幻读是怎么回事呢?

http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

By default, InnoDB operatesin REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlogsystem variable disabled. In this case, InnoDB uses next-key locks for searchesand index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoidingthe Phantom Problem Using Next-Key Locking”).

准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-keylocks可以避免幻读。

关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

MySQL manual里还有一段:

13.2.8.5. Avoiding the PhantomProblem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

Toprevent phantoms, InnoDB usesan algorithm called next-key locking that combinesindex-row locking with gap locking.

Youcan use next-key locking to implement a uniqueness check in your application:If you read your data in share mode and do not see a duplicate for a row youare going to insert, then you can safely insert your row and know that thenext-key lock set on the successor of your row during the read prevents anyonemeanwhile inserting a duplicate for your row. Thus, the next-key lockingenables you to “lock” the nonexistence of something in your table.

我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

SELECT * FROM child WHERE id> 100 FOR UPDATE;

这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

可以使用showinnodb status来查看是否给表加上了锁。

再看一个实验,要注意,表t_bitfly里的id为主键字段。

实验4-3:

t SessionA             Session B
|
| START TRANSACTION;                START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                                      INSERT INTO t_bitfly   VALUES (2, ‘b’);
|                            Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                              INSERT INTO t_bitfly
|                              VALUES (0, ‘0’);
|                                  (waiting for lock …
|                               then timeout)
|                                   ERROR 1205 (HY000):
|                                  Lock wait timeout exceeded;
|                                   try restarting transaction
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                           COMMIT;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
v

可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

MySQL manual里对可重复读里的锁的详细解释:

http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

Forlocking reads (SELECT with FORUPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, lockingdepends on whether the statement uses a unique index with a unique searchcondition, or a range-type search condition. For a unique index with a uniquesearch condition, InnoDB locksonly the index record found, not the gap before it. For other searchconditions, InnoDB locksthe index range scanned, using gap locks or next-key (gap plus index-record)locks to block insertions by other sessions into the gaps covered by the range.

——

一致性读和提交读,先看实验,

实验4-4:

tSessionA              Session B
|
| STARTTRANSACTION;             START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
|                              INSERT INTO t_bitfly   VALUES (2, ‘b’);
|                              
|                              COMMIT;
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| |  2 |b     |
| +—-+——-+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| |  2 |b     |
| +—-+——-+
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
v

如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

Ifyou want to see the “freshest” state of the database, you should use either theREAD COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;

——

结论:MySQLInnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-keylocks。


1)mvcc多版本控制提高读写qps

2) REPEATBLE READ 级别并不能完全避免幻读,需要加next key locks,可以使显示锁(select * where * for update   or lock in share mode)


一些文章写到InnoDB的可重复读避免了“幻读”(phantom read),这个说法并不准确。

做个试验:(以下所有试验要注意存储引擎和隔离级别)

mysql>show create table t_bitfly/G;
CREATE TABLE `t_bitfly` (
`id` bigint(20) NOT NULL default ‘0’,
`value` varchar(32) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk

mysql>select @@global.tx_isolation, @@tx_isolation;
+———————–+—————–+
| @@global.tx_isolation | @@tx_isolation  |
+———————–+—————–+
| REPEATABLE-READ       | REPEATABLE-READ |
+———————–+—————–+

试验4-1:

tSessionA                                                     Session B
|
| START TRANSACTION;                           START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| empty set
|                                INSERT INTO t_bitfly VALUES (1, ‘a’);
|                             
|
| SELECT * FROM t_bitfly;
| empty set
|                                                                      COMMIT;
|
| SELECT * FROM t_bitfly;
| empty set
|
| INSERT INTO t_bitfly VALUES (1, ‘a’);
| ERROR 1062 (23000):
| Duplicate entry ‘1’ for key 1
v (shit,刚刚明明告诉我没有这条记录的)

如此就出现了幻读,以为表里没有数据,其实数据已经存在了,傻乎乎的提交后,才发现数据冲突了。

试验4-2:

tSessionA               Session B
|
| START TRANSACTION;           START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                                       INSERT INTO t_bitfly VALUES (2, ‘b’);
|                            
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                               COMMIT;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|
| UPDATE t_bitfly SET value=’z’;
| Rows matched: 2  Changed:2  Warnings: 0
| (怎么多出来一行)
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |z     |
| |    2 |z     |
| +——+——-+
|
v

本事务中第一次读取出一行,做了一次更新后,另一个事务里提交的数据就出现了。也可以看做是一种幻读。

——

那么,InnoDB指出的可以避免幻读是怎么回事呢?

http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

By default, InnoDB operatesin REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlogsystem variable disabled. In this case, InnoDB uses next-key locks for searchesand index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoidingthe Phantom Problem Using Next-Key Locking”).

准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-keylocks可以避免幻读。

关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

MySQL manual里还有一段:

13.2.8.5. Avoiding the PhantomProblem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

Toprevent phantoms, InnoDB usesan algorithm called next-key locking that combinesindex-row locking with gap locking.

Youcan use next-key locking to implement a uniqueness check in your application:If you read your data in share mode and do not see a duplicate for a row youare going to insert, then you can safely insert your row and know that thenext-key lock set on the successor of your row during the read prevents anyonemeanwhile inserting a duplicate for your row. Thus, the next-key lockingenables you to “lock” the nonexistence of something in your table.

我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

SELECT * FROM child WHERE id> 100 FOR UPDATE;

这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

可以使用showinnodb status来查看是否给表加上了锁。

再看一个实验,要注意,表t_bitfly里的id为主键字段。

实验4-3:

t SessionA             Session B
|
| START TRANSACTION;                START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id&lt;=1
| FOR UPDATE;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                                      INSERT INTO t_bitfly   VALUES (2, ‘b’);
|                            Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                              INSERT INTO t_bitfly
|                              VALUES (0, ‘0’);
|                                  (waiting for lock …
|                               then timeout)
|                                   ERROR 1205 (HY000):
|                                  Lock wait timeout exceeded;
|                                   try restarting transaction
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
|                           COMMIT;
|
| SELECT * FROM t_bitfly;
| +——+——-+
| | id   | value |
| +——+——-+
| |    1 |a     |
| +——+——-+
v

可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

MySQL manual里对可重复读里的锁的详细解释:

http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

Forlocking reads (SELECT with FORUPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, lockingdepends on whether the statement uses a unique index with a unique searchcondition, or a range-type search condition. For a unique index with a uniquesearch condition, InnoDB locksonly the index record found, not the gap before it. For other searchconditions, InnoDB locksthe index range scanned, using gap locks or next-key (gap plus index-record)locks to block insertions by other sessions into the gaps covered by the range.

——

一致性读和提交读,先看实验,

实验4-4:

tSessionA              Session B
|
| STARTTRANSACTION;             START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
|                              INSERT INTO t_bitfly   VALUES (2, ‘b’);
|                              
|                              COMMIT;
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| |  2 |b     |
| +—-+——-+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| |  2 |b     |
| +—-+——-+
|
| SELECT * FROM t_bitfly;
| +—-+——-+
| | id | value |
| +—-+——-+
| |  1 |a     |
| +—-+——-+
v

如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

Ifyou want to see the “freshest” state of the database, you should use either theREAD COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;

——

结论:MySQLInnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-keylocks。


猜你喜欢

转载自blog.csdn.net/sunjinjuan/article/details/80916720
今日推荐