MT【210】四点共圆+角平分线

(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$),若$PF$平分$\angle{APB}$,求$|PF|$所有可能值。

解答:不妨设$AO:y=kx(k>0)$,联立方程$y=kx,y^2=4x$得$A(\dfrac{4}{k^2},\dfrac{4}{k})$

$AB:y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1);$联立方程:$y=\dfrac{\frac{4}{k}}{\frac{4}{k^2}-1}(x-1),y^2=4x$

得$ky^2+(k^2-4)y-4k=0$得$y_B=-k,\therefore B(\dfrac{k^2}{4},-k)$

由于OBAP四点共圆,故$k_{BP}=-k$(注:此性质见MT【125】)即:$\dfrac{y_p+k}{x_P-\frac{k^2}{4}}=\dfrac{y_p+k}{\frac{y_P}{4}-\frac{k^2}{4}}=-k$

得$P(\dfrac{(k^2-4)^2}{4k^2},\dfrac{k^2-4}{k})$,

由题意$PF$平分$\angle{APB}$故$\dfrac{AP}{BP}=\dfrac{AF}{BF}=\dfrac{y_A}{y_B}$代入坐标

得$$\dfrac{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{4}{k^2}\right)^2+\left(\dfrac{k^2-4}{k}-\dfrac{4}{k}\right)^2}{\left(\dfrac{(k^2-4)^2}{4k^2}-\dfrac{k^2}{4}\right)^2+\left(\dfrac{k^2-4}{k}+k\right)^2}=\left(\dfrac{\frac{4}{k}}{-k}\right)^2$$

记$t=k^2>0$化简得:$t^3(t-8)^2(16+t)=32^2(t-2)^2(t+1)$即$(t-4)(t+4)(t^2-12t-16)(t^2+12t-16)=0$,故$t_1=4,t_2=2(\sqrt{13}-3)$,

当$t=4$时$P(0,0)$舍去

当$t=2(\sqrt{13}-3)$时,$|PF|=x_P+1=\sqrt{13}-1$

猜你喜欢

转载自www.cnblogs.com/mathstudy/p/9615240.html