1、PCA

机器学习算法实现】主成分分析(PCA)——基于python+numpy

1、PCA算法介绍

主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征。这样不仅可以去除无用的噪声,还能减少很大的计算量。

PCA算法是如何实现的?

简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,z),x、y、z分别是原始空间的三个基,我们可以通过某种方法,用新的坐标系(a,b,c)来表示原始的数据,那么a、b、c就是新的基,它们组成新的特征空间。在新的特征空间中,可能所有的数据在c上的投影都接近于0,即可以忽略,那么我们就可以直接用(a,b)来表示数据,这样数据就从三维的(x,y,z)降到了二维的(a,b)。

问题是如何求新的基(a,b,c)?

一般步骤是这样的:先对原始数据零均值化,然后求协方差矩阵,接着对协方差矩阵求特征向量和特征值,这些特征向量组成了新的特征空间。具体的细节,推荐Andrew Ng的网页教程:Ufldl 主成分分析 ,写得很详细。

2、PCA算法实现

语言:Python

函数库:Numpy

>>> import numpy as np

根据上面提到的一般步骤来实现PCA算法

(1)零均值化

假如原始数据集为矩阵dataMat,dataMat中每一行代表一个样本,每一列代表同一个特征。零均值化就是求每一列的平均值,然后该列上的所有数都减去这个均值。也就是说,这里零均值化是对每一个特征而言的,零均值化都,每个特征的均值变成0。实现代码如下:

def zeroMean(dataMat):      
    meanVal=np.mean(dataMat,axis=0)     #按列求均值,即求各个特征的均值
    newData=dataMat-meanVal
    return newData,meanVal

函数中用numpy中的mean方法来求均值,axis=0表示按列求均值。

该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。

(2)求协方差矩阵

   newData,meanVal=zeroMean(dataMat)
   covMat=np.cov(newData,rowvar=0)
numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。
covMat即所求的协方差矩阵。

(3)求特征值、特征矩阵

调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:

eigVals,eigVects=np.linalg.eig(np.mat(covMat))

eigVals存放特征值,行向量。

eigVects存放特征向量,每一列带别一个特征向量。

特征值和特征向量是一一对应的
 

(4)保留主要的成分[即保留值比较大的前n个特征]

第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:

    eigValIndice=np.argsort(eigVals)            #对特征值从小到大排序
    n_eigValIndice=eigValIndice[-1:-(n+1):-1]   #最大的n个特征值的下标
    n_eigVect=eigVects[:,n_eigValIndice]        #最大的n个特征值对应的特征向量
    lowDDataMat=newData*n_eigVect               #低维特征空间的数据
    reconMat=(lowDDataMat*n_eigVect.T)+meanVal  #重构数据
    return lowDDataMat,reconMat


代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】

reconMat是重构的数据,乘以n_eigVect的转置矩阵,再加上均值meanVal。

OK,这四步下来就可以从高维的数据dataMat得到低维的数据lowDDataMat,另外,程序也返回了重构数据reconMat,有些时候reconMat课便于数据分析。

贴一下总的代码:

#零均值化
def zeroMean(dataMat):      
    meanVal=np.mean(dataMat,axis=0)     #按列求均值,即求各个特征的均值
    newData=dataMat-meanVal
    return newData,meanVal
 
def pca(dataMat,n):
    newData,meanVal=zeroMean(dataMat)
    covMat=np.cov(newData,rowvar=0)    #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本
    
    eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
    eigValIndice=np.argsort(eigVals)            #对特征值从小到大排序
    n_eigValIndice=eigValIndice[-1:-(n+1):-1]   #最大的n个特征值的下标
    n_eigVect=eigVects[:,n_eigValIndice]        #最大的n个特征值对应的特征向量
    lowDDataMat=newData*n_eigVect               #低维特征空间的数据
    reconMat=(lowDDataMat*n_eigVect.T)+meanVal  #重构数据
    return lowDDataMat,reconMat

3、选择主成分个数

文章写到这里还没有完,应用PCA的时候,对于一个1000维的数据,我们怎么知道要降到几维的数据才是合理的?即n要取多少,才能保留最多信息同时去除最多的噪声?一般,我们是通过方差百分比来确定n的,这一点在Ufldl教程中说得很清楚,并且有一条简单的公式,下面是该公式的截图:

根据这条公式,可以写个函数,函数传入的参数是百分比percentage和特征值向量,然后根据percentage确定n,代码如下:

def percentage2n(eigVals,percentage):
    sortArray=np.sort(eigVals)   #升序
    sortArray=sortArray[-1::-1]  #逆转,即降序
    arraySum=sum(sortArray)
    tmpSum=0
    num=0
    for i in sortArray:
        tmpSum+=i
        num+=1
        if tmpSum>=arraySum*percentage:
            return num

那么pca函数也可以重写成百分比版本,默认百分比99%。

def pca(dataMat,percentage=0.99):
    newData,meanVal=zeroMean(dataMat)
    covMat=np.cov(newData,rowvar=0)    #求协方差矩阵,return ndarray;若rowvar非0,一列代表一个样本,为0,一行代表一个样本
    eigVals,eigVects=np.linalg.eig(np.mat(covMat))#求特征值和特征向量,特征向量是按列放的,即一列代表一个特征向量
    n=percentage2n(eigVals,percentage)                 #要达到percent的方差百分比,需要前n个特征向量
    eigValIndice=np.argsort(eigVals)            #对特征值从小到大排序
    n_eigValIndice=eigValIndice[-1:-(n+1):-1]   #最大的n个特征值的下标
    n_eigVect=eigVects[:,n_eigValIndice]        #最大的n个特征值对应的特征向量
    lowDDataMat=newData*n_eigVect               #低维特征空间的数据
    reconMat=(lowDDataMat*n_eigVect.T)+meanVal  #重构数据
    return lowDDataMat,reconMat

@blog:http://blog.csdn.net/u012162613/article/details/42177327

http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html

猜你喜欢

转载自blog.csdn.net/qq_34514046/article/details/82559150
PCA